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Abstract—We propose a chaotic spiking oscillator
model that functions as a filter of spike trains, in which in-
put/output signals are spike pulses. The oscillator receives
periodic spike inputs, and the internal state of an oscillator
is mapped by a nonlinear function, otherwise the internal
state increases with a constant rate. The oscillator outputs
a spike pulse when the internal state exceeds a threshold for
firing. This model uses the input-spike interval as a bifur-
cation parameter; that is the input-spike interval changes
an attractor of the internal state. If the firing threshold is
outside of the range of the internal state determined by the
attractor, the oscillator outputs no spike. The oscillator acts
as a filter of spike trains by this characteristic. In this study,
we show that the oscillator acts as a low pass filter, a band
stop filter, and a filter combining both characteristics by
changing the firing threshold.

1. Introduction

Among many oscillator models were proposed so far
[1, 2, 3, 4], pulse-coupled oscillators transmit information
between each other with pulse timing [4]. The oscillators
can output periodic and chaotic spike trains, which was im-
plemented by a discrete electronic circuit [5, 6, 7], and by
CMOS integrated circuits [8].

In order to express various information by spike patterns,
it is necessary to generate various spike patterns including
output/non-output of spike pulses. Output/non-output of
spikes to the input-spike patterns can be considered as a
filter of spike trains.

We propose a chaotic spiking oscillator that functions as
a filter of spike trains. Our oscillator outputs a chaotic spike
train or no spikes according as the input spike interval. In
this study, we investigate the relationship between the pe-
riod of input-spike trains and the output-spike interval or
the firing rate.

2. Mathematical model of the oscillator

Internal statex of the oscillator is expressed as

x = ωt mod xrst, (1)

Sout =

{
1 if x = xth,
0 if x , xth,

(2)

whereω is the natural frequency,t continuous time,xrst

the resetting threshold for the internal state,xth the firing

threshold, andSout represents output spikes. Internal statex
increases monotonically towardxrst with ω. The oscillator
outputs spikeSout whenx exceedsxth.

It is noted thatx is never reset unlessx reachesxrst even
if the oscillator outputs spikeSout. This is a unique feature
of the proposed model. Whenx reachesxrst, x is reset to
zero. Internal statex is mapped as

x→ f (x) if Sin = 1, (3)

where f (·) is the update function ofx, andSin represents
input spikes.

Figure 1 shows the timing diagram of the updating
scheme. When no spikes output, the oscillator outputs
spikes with constant periodxrst/ω as shown in Fig. 1(a).
The update result ofx depends on timing becausex in-
creases constantly as shown in Fig. 1(b). Firing time of the
oscillator is changed by Eq. (3), which varies spike-interval
of Sout. The range ofx is determined by attractors gener-
ated bySin and f (·). The attractors determine the filtering
characteristics, which is determined by settingxth andxrst

individually.

3. Simulation and analysis method

3.1. Simulation method

In order to simplify numerical simulations, we defined
a return map ofx between input spike timing and the next
timing in Sin. We conducted numerical simulations, and
calculated spike-intervalTout of Sout using this return map,
whereTout is defined as the time-interval between adjacent
spikes, and time-step is defined by input-spikeSin. We as-
sumed the spike width to be negligibly small. In this study,
we employed a chaotic neuron model [9] asf (·):

f (x) = kx+ α/(1+ exp((x+ 0.5)/ϵ)) + a, (4)

where we setω = xrst = α = 1 andϵ = 0.05, k anda are
treated as parameters in this model.

Internal statex increases byωTin until it is updated by
input-spikeSin, whereTin is the input-spike interval. Inter-
nal statexi+1 at time-step (i + 1) is expressed by

xp,i = xi + ωTin mod xrst, (5)

xi+1 = f (xp,i), (6)
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Figure 1: Timing diagram of updating scheme: (a) without
spike inputs and (b) for periodic spike inputs.

wherexp,i is the internal state just before updating as shown
in Fig. 1(b). We calculateTout according toTin and xd,i

given by the following equation:

xd,i =

{
xth − xi if xth ≥ xi ,
xth − xi + xrst if xth < xi .

(7)

When xd,i/ω ≤ Tin, spike Sout is outputted becausex
reachesxth before next spikeSin is given. Whenxd,i/ω >
Tin, xp,i < xth and xth ≤ xi+1, Sout is outputted at the
same timing withSin. Whenxd,i/ω > Tin, xp,i ≥ xth and
xth > xi+1, Sout is not outputted.

3.2. Analysis method

We distinguished between periodic spike-trains and
chaotic spike-trains using the maximum valueCmax of the
normalized autocorrelation functionC(q) as defined by the
following equation.

C(q) =
⟨T̃ jT̃ j+q⟩
⟨T̃2

j ⟩
, (8)

where j is the index of output-spikeSout, T j is the output-
spike interval betweenj-th and (j + 1)-th output spikes,
T̃q = Tq − ⟨T j⟩, and ⟨T j⟩ denotes the long-time average
of T j with respect toj. If the spike-train is periodic,Cmax

equals unity. For a chaotic spike-train,Cmax is smaller than
unity. In this analysis, we setq = 1,000 and the number of
spikes for averaging is 10,000.

4. Numerical simulation results

4.1. Relation between Input and Output-spike inter-
vals

We investigatedTout whenTin is varied. The first 10,000
input-spikes were assumed to be transition time. We used
the following parameters:k = 0.97, a = −0.5, andxth =

0.5.
Figure 2 shows the change ofTout andCmax for different

Tin. Our proposed oscillator exhibits bifurcation phenom-
ena whenTin is changed as shown in Fig. 2(a). There
are regions whereCmax = 1 and those whereCmax <
1 as shown in Fig. 2(b). This result means that the
obtained spike-trains contain periodic and chaotic spike-
trains. Moreover, output-spike intervalTout equalsTin in
the region of about 0.4 ≤ Tin ≤ 0.7.

Figure 4 shows time-series ofx, f (x), Sin, andSout. Al-
though parameters off (x) are the same in all cases, the
ranges ofx are different as shown in Fig. 4 whenTin is
changed because input-spike intervalTin is one of the pa-
rameters as expressed by Eq. (5).

4.2. Firing rate

We investigated the firing rate for variousk, a, xth, and
Tin, where the firing rate is defined as the ratio of the num-
ber of output-spikesm to that of input-spikesn in time-
windownTin as shown in Fig. 3. We set heren = 100.

Figure 5 shows that firing-ratem/n is small whenTin is
short (high frequency). Figure 5(c) includes regions where
firing-ratem/n equals zero (black regions), which means
the oscillator is turned off. We can consider these black
regions ascutoff regions of a filter. If we setxth at the values
indicated by white broken lines in Fig. 5(c), the oscillator
acts as the following filters: (1) a low-pass filter, (2) a band-
stop filter, and (3) a filter combining both characteristics.

5. Discussion

The input-spike intervalTin acts as a bifurcation param-
eter as shown in Fig. 2(a). The bifurcation diagram in
this figure can be scaled by periodxrst/ω of the oscilla-
tor. Therefore, the resolution ofTin can be improved by
reducingxrst/ω, which is an advantage when the oscillator
is implemented in an electronic circuit. If we representx
in the voltage domain we can control the bifurcation pa-
rameter at high resolution without expanding the voltage
range. We can observe even a long periodic orbit that has
been difficult to observe until now. As with the bifurcation
diagram, the firing rate shown in Fig. 5 can also be scaled
by xrst/ω. Therefore, the cutoff region of the oscillator can
be change by scalingxrst/ω.
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Figure 2: Output-spike intervalTout and the maximum
value of autocorrelation functionCmaxwhenTin is changed,
where we setxth = 0.5: (a)Tin/ω vs. Tout/ω, and (b)Tin/ω
vs. Cmax. The black line representsTin = Tout.
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Figure 3: Definition of time-windownTin.

6. Conclusion

We proposed a chaotic spiking oscillator that acts as
a filter of spike trains. In numerical simulations, we in-
vestigated behaviors of the oscillator when periodic spike-
pulses are given. The obtained spike-trains were analyzed
by the normalized autocorrelation function.

As a result of numerical simulations, chaotic and peri-
odic spike-trains were included in the obtained spike-trains.
The oscillator outputted no spikes according as the value
of the input spike interval. This characteristic changes by

varying the firing threshold. We showed that the oscillator
acts as a low pass filter, a band stop filter, and a filter com-
bining both characteristics by varying the firing threshold.
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Figure 4: Time-series of state variablex, update function
f (x), input-spikeSin, and output-spikeSout obtained with
different spike-intervalTin: (a) Tin = 0.2 (period two), (b)
Tin = 0.31 (chaos), and (c)Tin = 0.98 (period three). The
blue and red lines representx and f (x), respectively.
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Figure 5: Firing-ratem/n of the oscillator: (a)α = 1, a =
−0.5, andxth = 0.5; (b) k = 0.97,α = 1, andxth = 0.5; (c)
k = 0.97,α = 1, anda = −0.5. We considered the period
n = [0,10000] as transition time.
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