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Abstract—This paper investigates amplitude
death in high-dimensional map networks with con-
nection delays. A stability analysis shows that death
never occurs if the connection delay is zero or the
fixed point has the so-called odd-number property.
In addition, the robust control theory, especially a
concept of convex direction, simplifies the systematic
procedure for designing the connection parameters
for inducing death. The designed parameters induce
death for any topology and any number of maps.
In order to confirm our analytical results, some
numerical examples are provided.

1. Introduction

It is well known that homogeneous steady states in
coupled oscillators can be stabilized by diffusive con-
nections with time delays [1]. This stabilization phe-
nomenon, known as amplitude death, has been investi-
gated from viewpoints of physics [2, 3, 4] and engineer-
ing [5, 6]. Most of these studies deal with amplitude
death in coupled continuous-time oscillators. The sta-
bility analysis of death in such oscillators is not easy
because the dimension of their dynamics becomes in-
finite. As a consequence, these studies are forced to
employ some particular techniques for analyzing time-
delay systems. In contrast, the stability analysis in
coupled discrete-time maps is easy due to its finite di-
mension; there is no need to employ such techniques.
However, to our knowledge, only few studies have been
made at amplitude death in the coupled discrete-time
maps.

The first observation of amplitude death in cou-
pled maps was reported in our previous study [7].
The study dealt with a pair of high-dimensional maps
coupled by a delay connection, where some analyti-
cal results were obtained: no-delay connection never
induces death; the well known odd-number property
still remains; death never occurs in a pair of one-
dimensional maps [7]. Further, amplitude death in
one-dimensional map networks with uniform delays [8]
and non-uniform delays [9, 10, 11] were reported. How-
ever, there is no report on death in high-dimensional
map networks with connection delays due to its diffi-

culty of stability analysis.
The present paper analyzes the stability of death

in high-dimensional map networks with uniform de-
lay connections. We present that the similar results
reported in our previous study [7] are valid even for
high-dimensional map networks. Furthermore, we sug-
gest that the robust control theory gives us a simple
systematic procedure for designing the connection pa-
rameters. The designed parameters are valid for any
topology and any number of maps. Some numerical
examples are employed to confirm our analytical re-
sults. The present work can be regarded as an exten-
sion of study [7] for networks and that of study [8] for
high-dimensional maps.

2. Map networks

Consider N identical maps,
{

xi(n + 1) = F
[
xi(n)

]
+ bui(n),

yi(n) = cxi(n), (1)

for i = 1, . . . , N . Here xi(n) ∈ Rm is the m-
dimensional state variable of map i at time n. The
input and output signals are ui(n) ∈ R and yi(n) ∈ R,
respectively. The nonlinear function F : Rm → Rm

has the fixed point x∗ : x∗ = F
[
x∗]. b ∈ Rm and

c ∈ R1×m are the input and output vectors, respec-
tively. The input signal is given by

ui(n) = k

⎡
⎣
⎧⎨
⎩

N∑
j=1

εij

di
yj(n − τ)

⎫⎬
⎭− yi(n)

⎤
⎦ , (2)

where τ ∈ Z+ denotes the delay time and k ∈ R
is the coupling strength. εij ∈ {0, 1} describes the
following situation: if map i and map j are connected,
then εij = εji = 1, otherwise εij = εji = 0; εii = 0,
∀i. The number of connections to map i is denoted by
di :=

∑N
j=1 εij .

Maps (1) with connection (2) have the steady state,

[
x1(n)T · · · xN (n)T

]T =
[
x∗T · · · x∗T

]T
,
(3)

- 719 -

2014 International Symposium on Nonlinear Theory and its Applications
NOLTA2014, Luzern, Switzerland, September 14-18, 2014



which is the spatially uniform equilibrium solution.
The linearized map around state (3) is given by

vi(n + 1) = (A − kbc)vi(n) + kbc
N∑

j=1

εij

di
vj(n − τ),

for i = 1, . . . , N with vi(n) := xi(n)−x∗. Assume that
the Jacobi matrix A := {∂F (x)/∂x}x=x∗ is unstable
(i.e., x∗ is unstable) throughout this paper. This linear
map can be rewritten as

V (n + 1) =
[
IN ⊗ (A − kbc)

]
V (n)

+ (E ⊗ kbc)V (n − τ), (4)

where

V (n) :=

⎡
⎢⎣

v1(n)
...

vN (n)

⎤
⎥⎦ , E :=

⎡
⎢⎣

ε11/d1 · · · ε1N/d1

...
. . .

...
εN1/dN · · · εNN/dN

⎤
⎥⎦ .

Let us remember that the local stability of state (3) is
equivalent to that of mN -dimensional linear map (4).

3. Stability analysis

This section will consider the stability of linear map
(4), which is governed by the characteristic polyno-
mial,

Ḡ(z) := det [zImN − IN ⊗ (A − kbc)

−(E ⊗ kbc)z−τ
]
. (5)

Since matrix IN −E can be diagonalized with a diag-
onal transformation matrix T [12],

T−1(IN − E)T = diag(ρ1, . . . , ρN ), (6)

0 = ρ1 ≤ ρ2 ≤ · · · ≤ ρN ≤ 2, (7)

we have Ḡ(z) :=
∏N

q=1 ḡ(z, ρq), where ḡ(z, ρ) :=
d(z) + n(z)k {1 − (1 − ρ)z−τ} . Here the polynomials
d(z) and n(z) are denoted by

n(z)
d(z)

:= c(zIm − A)−1b =
cadj(zIm − A)b
det

[
zIm − A

] .

Remark that the stability of Ḡ(z) is equivalent to that
of

G(z) :=
N∏

q=1

g(z, ρq), (8)

g(z, ρ) := zτd(z) + n(z)k (zτ − 1 + ρ) . (9)

It should be noted that n(z)/d(z) is a transfer func-
tion of map (1), at the fixed point x∗, from the input
ui(n) to the output yi(n). This paper will discuss the
stability of G(z) below.

Now we consider some properties of the stability of
steady state (3). In order to derive these properties,
we should understand the following fact: a sufficient
condition for steady state (3) to be unstable is that
g(z, 0) is unstable, since G(z) inevitably includes
g(z, ρ1) with ρ1 = 0. From this fact, we can obtain
the following lemmas.

Lemma 1. Steady state (3) in maps (1) with con-
nection (2) is unstable for any topology E and any
coupling strength k, if the connection delay time τ
is zero (i.e., no-delay connection).

Proof. The characteristic polynomial g(z, 0) with τ =
0, g(z, 0) = d(z), does not depend on E and k. The as-
sumption, A is unstable, suggests that d(z), the char-
acteristic polynomial of A, is also unstable. Thus, we
conclude that the characteristic polynomial G(z) = 0
with τ = 0, which includes g(z, 0) = d(z) = 0, has the
unstable roots.

Lemma 2. Steady state (3) in maps (1) with con-
nection (2) is unstable for any topology E, any cou-
pling strength k, and any delay time τ , if the Jacobi
matrix A has the odd number property (i.e., A has
an odd number of real eigenvalues greater than 1).

Proof. The characteristic polynomial g(z, 0) with z =
1 is g(1, 0) = d(z), which does not depend on E, k,
and τ . If the characteristic equation of A, that is,
d(z) = 0, has an odd number of real roots greater
than 1, we have d(1) < 0. Thus, we see that if A has
the odd number property, g(z, 0) = 0 has at least one
real root z > 1.

These unstable properties for N = 2 were derived in
study [7]; hence, Lemmas 1 and 2 imply that these
properties hold even for networks with N > 2.

In addition, we can easily provide the following
property: steady state (3) in one-dimensional (m = 1)
maps (1) coupled by connection (2) with bipartite
topologies (ρN = 2) is unstable for any coupling
strength k and τ . This property has been already given
in previous studies [7, 8].

4. Design of connection parameters

This section will propose a systematic procedure for
designing the connection parameters k and τ , which
are valid for any topology E and any number of maps
N . We will show that the parametric approach in ro-
bust control theory allows us to derive the procedure.

Let us consider a one parameter family of polyno-
mials,

L(z) := {g(z, ρ) : ρ ∈ [0, 2]} ,

known as a segment of polynomials. Note that the pa-
rameter ρ belongs to the interval [0, 2] due to condition
(7) for any E and N . Thus, our design problem can
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be reduced to a choice of k and τ such that L(z) is
stable. All the coefficients of g(z, ρ) defined in Eq. (9)
are described by affine functions of ρ; then L(z) can
be expressed by

L(z) = {g(z, 0) + μĝ(z) : μ ∈ [0, 1]} , (10)

where ĝ(z) := g(z, 2)−g(z, 0) presents the direction of
the segment.

It is well known in the robust control theory [13, 14]
that L(z) is a stable segment if the following three
conditions hold (see Appendix A): (a) g(z, 0) is stable;
(b) g(z, 2) is stable; (c) ĝ(z) is a convex direction. The
conditions (a) and (b) are easily checked by popular
stability criteria, such as the Jury stability test [15].

Now we will explain how to check condition (c).
Substituting polynomials (9) with ρ = 0 and 2 into
ĝ(z) := g(z, 2) − g(z, 0), we have

ĝ(z) = 2kn(z). (11)

The direction ĝ(z) and the definition of convex
directions (see Appendix A) yield the following simple
condition.

Lemma 3. ĝ(z) is a convex direction if the follow-
ing inequality holds:

1
n2

r + n2
i

(
nr

dni

dθ
− ni

dnr

dθ

)
≤ m

2
(12)

for θ ∈ (0, π), where n
(
ejθ

)
:= nr(θ) + jni(θ).

Proof. It is easy to deduce from Theorem 2 in Ap-
pendix A that a sufficient condition for ĝ(z) to be a
convex direction is

∂ arg
{
ĝ
(
ejθ

)}
∂θ

≤ m

2
(13)

for θ ∈ (0, π). Substituting Eq. (11) with n
(
ejθ

)
:=

nr(θ)+jni(θ) into inequality (13), we obtain inequality
(12).

Let us remember that n(z) is the numerator polyno-
mial of the transfer function of map (1), at the fixed
point x∗, from the input ui(n) to the output yi(n).
Note that the direction of ĝ(z) depends only on n(z)
but not the connection parameters k and τ . This
fact suggests that the direction cannot be changed
by the connection parameters. Now all the Lemmas
mentioned above allow us to solve our design problem.

Theorem 1. Assume that maps (1) satisfy the fol-
lowing conditions: A does not have an odd number
of real eigenvalues greater than 1; the maps are not
scalar maps (i.e., m ≥ 2); the polynomial n(z) sat-
isfies Lemma 3. If the connection parameters k and
τ are designed such that both of g(z, 0) and g(z, 2)
are stable, then steady state (3) is stable for any
topology E and any number of maps N .

Proof. It is obvious from the Lemmas; we omit this
proof.

Theorem 1 gives us the following procedure.

(Step 1) If m ≥ 2 holds and d(z) = det
[
zIm − A

]
=

0 does not have odd number of real roots greater
than 1, go to the next step, otherwise stop.

(Step 2) If n(z) = cadj(zIm − A)b satisfies Lemma
3, then go to the next step, otherwise stop.

(Step 3) Design k and τ such that both of

g(z, 0) = zτd(z) + n(z)k (zτ − 1) ,

g(z, 2) = zτd(z) + n(z)k (zτ + 1) ,
(14)

are stable.

5. Numerical Examples

This section will check our analytical results by some
numerical examples. Let us consider the delayed logis-
tic maps (m = 2) [7],

F (x) :=
[

x(2)

px(2)

{
1 − x(1)

}] , b :=
[
1
0

]
, c :=

[
1
0

]T

,

where p is the parameter. The fixed point is x∗ =[
(p − 1)/p (p − 1)/p

]T and the Jacobi matrix A at
fixed point x∗ is

A =
[

0 1
1 − p 1

]
.

From (A, b, c), we can obtain

d(z) = z2 − z + p − 1, n(z) = z − 1. (15)

The parameter is fixed at p = 2.1 in accordance with
our previous study [7].

Now we follow our procedure. For (Step 1) we
estimate all the roots of d(z) = 0 with m = 2:
z = 0.5 ± j

√
3.4/2. As the odd number property does

not hold, go to the next step. For (Step 2) we see that
inequality (12) with nr(θ) = cos θ−1 and ni(θ) = sin θ
is equivalent to 1/2 ≤ 1. This fact guarantees that ĝ(z)
is a convex direction, then go to the next step. For
(Step 3) we set k = 0.2 and τ = 1 such that g(z, 0)
and g(z, 2) are stable.

In order to check that the designed k and τ are valid
for any network topology, we prepare two typical net-
works consisting of six maps (N = 6): a ring network
and a complete (i.e., all to all) network. Figures 1(a)
and 1(b) show the time series data of x(1) for all the
maps on the ring and the complete networks, respec-
tively. All the maps without connection (i.e., k ≡ 0)
runs for n < 50; they are connected at n = 50, then
all the maps converge on the fixed point x∗. These
numerical results support our analytical results.
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Figure 1: Time series data of of x(1) on two networks
with N = 6: (a) ring network, (b) complete network.

6. Conclusions

This paper investigated amplitude death in high-
dimensional map networks with connection delays. On
the basis of the robust control theory, the stability
of death was analyzed and the systematic procedure
for designing the connection parameters was proposed.
The designed parameters do not depend on the net-
work topology and the number of maps. Our analyti-
cal results were confirmed by the delayed logistic map
networks.
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A. Convex direction

Consider a family of m-th degree polynomials,

δ(z) = {μδ1(z) + (1 − μ)δ2(z) : μ ∈ [0, 1]} ,

=
{

δ2(z) + μδ̂(z) : μ ∈ [0, 1]
}

,

(16)
where δ̂(z) := δ1(z) − δ2(z) is a (m − 1)-th degree
polynomial. The definition of the convex direction is
as follows.

Definition 1 ([14]). A (m−1)-th degree polynomial
δ̂(z) is said to be a convex direction if, for all the
stable m-th degree polynomials δ2(z), m-th degree
polynomial δ2(z) + δ̂(z) is stable, then the family of
m-th degree polynomials δ(z) is stable.

This definition suggests that if m-th degree polynomi-
als δ1,2(z) are stable and (m−1)-th degree polynomial
δ̂(z) is a convex direction, then the family of m-th

degree polynomials δ(z) is stable. The following
theorem provides us a simple procedure to check if
δ̂(z) is a convex direction or not.

Theorem 2 ([14]). A (m−1)-th degree polynomial
δ̂(z) is a convex direction if and only if the following
inequality holds:

∂ arg
{

δ̂
(
ejθ

)}
∂θ

≤ m

2
+

∣∣∣∣∣∣
sin

(
2 arg

{
δ̂
(
ejθ

)}− mθ
)

2 sin θ

∣∣∣∣∣∣
(17)

for θ ∈
{

φ ∈ (0, π); δ̂
(
ejφ

) 
= 0
}
.
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