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Abstract—This paper investigates amplitude
death induced by an unstable dynamic connection.
This connection can be considered as an extension of
the dynamic feedback controller based on an unstable
low pass filter. We prove that the unstable dynamic
connection can induce amplitude death at the steady
state with the well-known odd number property.
The analytical results are verified by numerical
simulations.

1. Introduction

The collective dynamics in coupled nonlinear oscil-
lators have been of great interest [1]. A stabilization of
unstable steady state in diffusively coupled oscillators
is known as amplitude death [2]. This phenomenon
was discovered first in non-identical oscillators coupled
by a static connection [3]. After that, it has been re-
ported that a delayed connection [4], a dynamic con-
nection [5], and a conjugate connection [6] can induce
amplitude death even in coupled identical oscillators.
These three connections have been experimentally ver-
ified by electronic circuits [7–9].

Amplitude death has been expected to suppress un-
desired oscillations in engineering systems such as DC
micro grid [10] and coupled laser systems [11]. Thus,
from engineering point of view, it is desirable to pro-
vide a simple design procedure of the connection pa-
rameters for inducing amplitude death. However, the
delayed connection and the conjugate connection have
the following disadvantages to practical use: the de-
layed connection is difficult to analyze, since its char-
acteristic equation includes a delay term; the conju-
gate connection may cause oscillation death which is
totally different from amplitude death [12]. Therefore,
our previous study focused on the dynamic connec-
tion and proposed a topology-independent design pro-
cedure of the connection parameters [13]. However,
the dynamic connection has a problem that it can-
not stabilize the steady state if the Jacobian matrix of
the oscillator at the steady state has an odd number
of real positive eigenvalues, known as the odd-number
property [13].

The odd number property was also reported for a
single oscillator controlled by the dynamic feedback
[14, 15]. To overcome this problem, these reports pro-
posed a dynamic controller based on an unstable low
pass filter; thus, the odd number property for a sin-
gle oscillator has been already solved. On the other
hand, the dynamic connection, an extension of the dy-
namic feedback to the coupled oscillators, has still the
problem of the odd number property.

This paper proposes an unstable dynamic connec-
tion to overcome the odd number property in the cou-
pled oscillators. This connection is an extension of
the dynamic controller based on unstable low pass fil-
ter. It is analytically shown that the unstable dynamic
connection can stabilize the steady state with the odd
number property. These analytical results are verified
by numerical simulations.

2. Unstable dynamic connection

2.1. A pair of oscillators

Let us consider two m-dimensional identical oscilla-
tors α and β,{

ẋα,β = F (xα,β) + buα,β

yα,β = cxα,β

, (1)

where xα,β ∈ Rm is the state variable of each oscil-
lator. yα,β ∈ R and uα,β ∈ R are the output signal
and the input signal, respectively. F (x) : Rm → Rm

denotes the nonlinear function. b ∈ Rm×1 and c ∈
R1×m are the input and output vectors, respectively.
Oscillators α and β are coupled by the following dy-
namic connection:

ẇ = γ(yα + yβ − 2w), (2)

uα,β = k(w − yα,β), (3)

where w ∈ R is the additional variable and k > 0 is the
coupling strength. The connection parameter γ ∈ R
represents the stability of the dynamic connection it-
self (i.e., Eq. (2) with yα = yβ = 0): for γ ≥ 0, the
dynamic connection is stable; for γ < 0, it is unstable.
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Even though the previous studies [5,13] consider only
for γ ≥ 0, this report employs γ < 0 (i.e., the unstable
dynamic connection). Notice that this connection is
an extension of the dynamic feedback controller based
on an unstable low-pass filter [14, 15]. Furthermore,
for γ < 0, the variable w diverges before coupling the
oscillators. We will introduce a way to avoid this di-
vergence in Sec. 3.

Oscillators (1) with coupling (2) and (3) have the
steady state,

[
xT
α xT

β w
]T

=
[
x∗T x∗T w∗

]T
, (4)

where x∗ is an unstable steady state of the nonlinear
function F (x) (i.e., F (x∗) = 0) and w∗ := cx∗. The
linearized Eq. (1) with (2) and (3) around steady state
(4) is given by⎡
⎣ ˙Δxα

˙Δxβ

Δẇ

⎤
⎦=

⎡
⎣ A− kbc 0 kb

0 A− kbc kb
γc γc −2γ

⎤
⎦
⎡
⎣ Δxα

Δxβ

Δw

⎤
⎦ ,

(5)
where Δxα,β := xα,β − x∗ and Δw := w − w∗ are
the perturbation from the steady state (4). A :=
{∂F (x)/∂x}x=x∗ is the Jacobian matrix.

The stability of the linear system (5) is governed by
the characteristic equation,

G(s) := g1(s)g2(s) = 0, (6)

where

g1(s) :=det [sIm −A+ kbc] ,

g2(s) :=(s+ 2γ) det

[
sIm −A+ k

(
1− 2γ

s+ 2γ

)
bc

]
.

(7)

The steady state (4) is stable if and only if all the roots
of g1(s) = 0 and g2(s) = 0 stay on the open left-half
complex plane.

2.2. Odd number property

This subsection reviews the odd number property of
the conventional dynamic connection [5,13]. Moreover,
it is shown that the unstable dynamic connection can
overcome the odd-number property.

Consider the conventional dynamic connection (γ ≥
0). For real positive s, we have

lim
s→∞ g2(s) = +∞, (8)

and

g2(0) = 2γdet [−A]

= 2γ
m∏
q=1

(−σq), (9)

where σq (q = 1, . . . ,m) are the eigenvalues of A. As-
sume that A has an odd number of real positive eigen-
values. Then, we have g2(0) < 0. From Eq. (8) and
g2(0) < 0, the equation g2(s) = 0 has at least one real
positive root on the real axis. Therefore, amplitude
death never occurs for any k and γ > 0 if A has an
odd number of real positive eigenvalues. This limita-
tion is called the odd-number property.

Now, we consider the unstable dynamic connection
(γ < 0). Remark that Eq. (8) is still held even for
γ < 0. On the other hand, if A has an odd number of
real positive eigenvalues, then we obtain g2(0) > 0.
From Eq. (8) and g2(0) > 0, we cannot guarantee
whether g2(s) = 0 has real positive roots or not.
In other words, the unstable dynamic connection can
overcome the odd-number property.

3. Numerical example

Consider a pair of Lorenz systems, which is given by
Eq. (1) with

F (x) =

⎡
⎢⎢⎣

p(x(2) − x(1))

−x(1)x(3) + rx(1) − x(2)

x(1)x(2) − bx(3)

⎤
⎥⎥⎦ . (10)

The parameters are fixed at the well-known values,

p = 10, r = 28, b = 8/3, (11)

where the individual Lorenz system behaves chaoti-
cally.

The Lorenz system (10) with the parameters (11)
has three unstable fixed points x∗

± := [±(br −
b)1/2,±(br − b)1/2, r − 1]T and x∗

0 := [0, 0, 0]T . We
see that the Jacobian matrix A at x∗

0 has an odd num-
ber of real positive eigenvalues (odd number property).
This report focuses on the stability of x∗

0.
The input and output vectors are set to

b = [0 1 0 ]T , c = [0 1 0 ]. (12)

The Jacobian matrix at x∗
0 is given by

A =

⎡
⎣ −p p 0

r −1 0
0 0 −b

⎤
⎦ , (13)

whose eigenvalues are λ1 = −8/3, λ2 = 11.8277, and
λ3 = −22.8277.

By substituting Eqs. (12) and (13) into Eq. (7), we
have the characteristic equations,

g1(s) = (s+ b)
{
s2 + (1 + k + p)s+ p(k − r + 1)

}
,

g2(s) = (s+ b)
[
s3 + (2γ + 1 + p+ k)s2+

{2γ + p(2γ + 1− r + k)} s− 2γp(1− r)] .
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Figure 1: Stability region in (k, γ) space

The Routh-Hurwitz criteria shows that g1(s) and g2(s)
are stable if and only if the following all inequalities
are satisfied:

k − r + 1 > 0, 2γ + 1 + p+ k > 0,

2γ + p(2γ + 1− r + k) > 0, γ < 0,

(2γ + 1 + p+ k) {2γ + p(2γ + 1− r + k)}
+ 2γp(1− r) > 0. (14)

The stability region on (k, γ) space is drawn in Fig. 1.
The parameter sets (k, γ) in the shaded area satisfy
all the inequalities (14). It should be noted that the
stability region lies only for γ < 0 (i.e., the unstable
dynamic connection).

Our analytical results are confirmed by numerical
simulation. Since the dynamic connection (2) is un-
stable for γ < 0, the variable w diverges before cou-
pling the oscillators. To avoid this divergence, Eq. (2)
is modified as follows:

ẇ = γ(yα + yβ − 2Φ(w)), (15)

where Φ(x) is set to a piecewise linear function,

Φ(x) :=

⎧⎪⎨
⎪⎩
−3x− 8 if x < −2

x if − 2 < x < 2

−3x+ 8 if x > 2

. (16)

Equation (15) without coupling (yα = yβ = 0) has
two stable fixed points w = 8/3 and w = −8/3 and
one unstable fixed point w = 0 which corresponds to
the unstable dynamic connection. As a consequence,
the variable w dose not diverge before coupling.

Figure 2 shows the time-series data of the variables

x
(1)
α,β and w at point A:(k, γ) = (25,−2) and point

B:(k, γ) = (45,−2) in Fig. 1. Two oscillators are cou-
pled at t = 30. At point A as illustrated in Fig. 2(a),
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(a) Point A:(k, γ) = (25,−2)
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(b) Point B:(k, γ) = (45,−2)

Figure 2: Time-series data of x
(1)
α,β and w at points (a)

A and (b) B in Fig. 1

after coupling, x
(1)
α,β and w still oscillate. In contrast,

at point B as illustrated in Fig. 2(b), after coupling,
they converge onto the fixed point x∗

0 = 0 and w∗ = 0
which satisfy the odd number property. Moreover, be-
fore coupling, the variable w dose not diverge but con-
verges onto w = 8/3.

Here, to investigate the mechanism of stabilization,
we derive the root locus of g1(s) = 0 and g2(s) = 0 as
a function of k. The parameter γ is fixed at γ = −2
and k is varied from 0 to 50 (see the dashed arrow
in Fig. 1). The root locus of g1(s) = 0 is shown in
Fig. 3(a). For k = 0, g1(s) = 0 has one real posi-
tive root s = λ2 corresponding to an eigenvalue of A.
With increasing k, this root moves to left and crosses
the imaginary axis for k = r − 1. On the other hand,
it is obvious from Eq. (7) that the real negative root
s = λ1 dose not move with increasing k. Figure 3(b)
illustrates the root locus of g2(s) = 0. For k = 0,
g2(s) = 0 have the two positive roots: s = λ2 corre-
sponding to the eigenvalue of A, s = λc corresponding
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Figure 3: Root locus of g1(s) = 0 and g2(s) = 0 (γ =
−2). k is varied from 0 to 50.

to the root of the unstable dynamic connection, where
λc := −2γ. With increasing k, they close together
and coalesce for k = k21. After that, they turn to
be the complex conjugate roots and move to left to-
gether. For k = k22, they cross the imaginary axis
from right to left. Therefore, Hopf bifurcation occurs
for stabilization. Note that this stabilization process
of g2(s) = 0 is equivalent to that of a single oscilla-
tor with a dynamic feedback controller based on an
unstable low pass filter [15].

4. Conclusion

This report investigated amplitude death induced
by the unstable dynamic connection. We analytically
indicated that the steady state with the odd number
property can be stabilized by this connection. Fur-
thermore, the obvious problem with the unstable con-
nection has been solved by introducing the new stable
fixed points in the connection. The analytical results
are verified by numerical simulations.
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