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Abstract—Macroscopic signals or order parameters of
complex oscillator network may reflect the structure of its
network components. However, it remains unclear how to
decipher network structure from macroscopic observables.
Here, we develop an approach to relate the order parameter
statistics of complex oscillator network to the structure of
small-world networks.

1. Introduction

In complex systems consisting of many interconnected
units, population activity of these units reflects the network
topology and intrinsic properties of the elements. The in-
trinsic properties of each network component is able to be
determined by isolation of a target unit from the complex
network. On the other hand, it is more exacting to inves-
tigate the coupling structure between units in the complex
network. For instance, in the neuronal complex network
in the brain, many researchers have identified the network
structure of complex network by simultaneously measur-
ing from multiple elements and then extracting the strongly
correlated pairs. However, obtaining activities of each el-
ement individually is often impossible in real recording
systems, such as the neuronal network, and moreover, the
strong ”correlation” does not always mean the strong ”cou-
pling”. So we desire to develop a novel strategy to in-
vestigate the network structure or topology of complex
networks. We study how the macroscopic observables,
coarse-grained or averaged signals of many surrounding el-
ement activities, depend on the network structure in com-
plex noisy phase-oscillator systems.

In 1998, Bramwell et al. found that the power con-
sumption in turbulent flow and the magnetization at critical
point in magnetic XY-spin system show common statisti-
cal features: The probability distributions of these order-
parameter fluctuations obey the same non-Gaussian distri-
bution [1][2]. The phase order-parameter of coupled 2D-
lattice oscillators with spatiotemporally independent weak
noise and that of a 2D-coupled chaotic phase map model
also obey similar non-Gaussian distribution [3]. Shape of
the standardized non-Gaussian distribution is independent
of the network system size, noise intensity (temperature),
or diffusion factor if the system size is sufficiently large,
while the average and the variance of the order parameter
depend on these system parameters. On the other hand, the

shape of the distribution function depends on the network
topology such as the lattice dimension and the boundary
condition [2][3]. For instance, the order parameter of the
2D-lattice system and that of the 3D-lattice system with the
periodic boundary condition obey different non-Gaussian
distribution. Here, we try to link the eigenvalues of Lapla-
cian connection matrix with the non-Gaussian statistics of
the phase order parameter in general phase oscillator net-
works.

2. Results

We introduce a coupled phase-oscillator model consist-
ing of N phase-oscillator and their network topology is de-
termined by Laplacian connection matrix L jk. The time
evolution of the phase of jth oscillator ϕ j (mod 2π) is given
by

dϕ j(t)
dt

= F(ϕ j(t)) +
N∑

k=1

W jk(ϕk(t) − ϕ j(t)) + cξ j(t),

where F is a nonlinear function determining the dynamics
of jth phase oscillator ϕ j and W jk is a nonlinear interac-
tion function between the jth and the kthe oscillator. ξ j and
c represent spatiotemporally independent white Gaussian
noise and its intensity, respectively. Suppose that all the
oscillators are locked in phase when c = 0 and the noise in-
tensity c is sufficiently small, we can approximate the non-
linear differential equations by a linearised form around the
fixed point (ϕ = 0) as

dϕ j(t)
dt

=

N∑
k=1

L jkϕk(t) + cξ j(t).

We define a macroscopic phase order-parameter to this
oscillator network as

M(t) =
1
N

∣∣∣∣∣∣∣∣
N∑

j=1

eiϕ j(t)

∣∣∣∣∣∣∣∣ .
The macroscopic observable M(t) represents the degree

of synchronization of N oscillators. If all the oscillators are
perfectly synchronized, the value is unity. In the following
subsection, we focus on the shape of distribution function
of M(t) for several complex networks, and then analytically
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derive the relationship between the distribution function of
M(t) and the network topology (structure of Laplacian con-
nection matrix) in the last subsection.

2.1. Order-parameter distribution of 2D/3D-lattice
network

As the first example of network topology, we show that
the distribution of the phase order parameter M(t) of 2D-
square/triangle lattices with periodic boundary condition
(Figure 1) [1]∼[3]. As shown in Figure 1A, though the
averages ⟨M⟩ and variances σ2 of M(t) depend on the
shape of lattice (square or triangle) or the number of os-
cillators N, the standardized phase order-parameter x =
(M−⟨M⟩)/σ obey the very skewed common non-Gaussian
distribution (Figure 1B and C). Also in the 3D-lattice case,
the standardized phase order-parameter x obeys another
(less skewed) common non-Gaussian distribution indepen-
dent of the network size (Figure 2).

Note that using different boundary conditions such as
free boundary condition, the standardized phase order-
parameter x obeys other common non-Gaussian distribu-
tions. Surprisingly, all the non-Gaussian distributions, in-
cluding the 2D- and 3D-torus cases, are well fitted by a
generalized Gumbel distribution family which has only one
shape parameter κ [4]

P(x) =
ν

Γ(κ)
exp
(
κ(νx + µ) − exp(νx + µ)

)
,

where a scale parameters ν and a location parameter µ are
determined so that the average of x is zero and the variance
of x is unity.
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Figure 1: Order parameter distribution P(M) and standard-
ized order-parameter distribution P(x) of 2D-torus phase-
oscillator lattices (N = 162, 322, 642, 1282, dashed
lines:triangle lattices, solid lines:square lattice). A. Order
parameter distribution (P(M)), B. Standardized distribution
of A (P(x)), C. Semi-logarithmic plot of B (log P(x)).
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Figure 2: Order parameter distribution of 3D-torus phase-
oscillator lattices (N = 83, 123, 163, 203, 243, 283).
A. Order parameter distribution (P(M)), B. Standardized
distribution of A (P(x)), C. Semi-logarithmic plot of B
(log P(x)).

2.2. Order-parameter distribution of Watts-Strogatz
small-world network

The second example of network topologies is a small-
world network introduced by Watts and Strogatz [4].
Watts-Strogatz network is generated by rewiring with prob-
ability p from a ring-like structure with nearest-k-element
connection. The network is regular extended cycle if p = 0,
whereas random network if p = 1. When p is set to
an intermediate value (typically 0.01 ∼ 0.1), the net-
work shows small-world properties (large-clustering and
small-distance). Figure 3 A∼C shows the p-dependence
of standardized phase order-parameter distribution P(x) in
Watts-Strogatz network. Interestingly, in case of p =
0.05, N = 2000 (in the small-world regime), standard-
ized phase order-parameter statistics obeys a non-Gaussian
distribution which is very similar to that of lattice oscilla-
tor network shown in the previous subsection. In the case
of Watts-Strogatz network, the shape of the phase order-
parameter distribution P(x) depends on the system size N
(Figure 3D and F). Instead, if the ”number of bypass con-
nections” N pk is fixed (Figure 3E), the standardized phase
order-parameter distributions fall on a common curve in the
small-world regime (Figure 3F).

We find the standardized phase order-parameter obeys a
non-Gaussian scale independent common distribution not
only in 2D/3D lattices but also in Watts-Strogatz small
world network.

2.3. Eigenvalues of Laplacian matrix

In order to find out the relationship between the shape
of standardized phase order-parameter distribution and net-
work topology, we derive the features of the eigenvalue set
of Laplacian connection matrix from standardized phase
order-parameter distribution distribution. We extended a
method introduced in Bramwell et al. [2] for lattice net-
works to more general networks.

The time evolution of the phase oft the jth oscillator ϕ j

is described as

ϕ j(t) =

N∑
α=1

N∑
k=1

Aα
jkc
∫ t

0
e−λ

α sξk(t − s)ds
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Figure 3: Order parameter distribution of Watts-Strogatz
small world network (k = 2). A∼C p-dependence (p =
0, 0.05, 0.2, 0.95, N = 500), B. Standardized distribution
of A, C. Semi-logarithmic plot of B. D∼F N-dependence
(N = 250, 500, 1000, 2000, 4000, 8000). D. Rewiring
probability is fixed (p = 0.04), E. Number of bypass con-
nections is fixed (N p = 40), F. Semi-logarithmic plot of
standardized distributions of D (dashed lines) and E (solid
lines).

where Aα
jk ≡ ηαj η

α
k and ηαj is the eigenvector correspond-

ing to the αth smallest eigenvalue λα of LCM L jk. We in-
troduce the phase difference ψ j(t) ≡ ϕ j(t) − ϕ̄(t), where
ϕ̄(t) ≡ tan−1

(∑N
j=1 sin ϕ j(t)

/ ∑N
j=i cos ϕ j(t)

)
.

Using ψ j, the average and correlation between two
phases of oscillators in the steady state are calcurated as⟨
ψ jψk

⟩
=
∑N
α=2

c2

2λα Aα
jk ≡ ϵJ jk,

⟨
ψ j

⟩
= 0, where ⟨·⟩ means

ensemble average over the noise.
Therefore, the nth moment of the distribution of M(t) is

represented as

⟨Mn⟩ = 1
(2N)n

N∑
{ j}=1

exp

− ϵ2
n∑
µ=1

J jµ jµ


× Tr exp

−ϵ n−1∑
µ=1

n∑
ν=µ+1

σµσνJ jµ jν

 ,
where

∑N
{ j}=1 =

∑N
j1=1
∑N

j2=1 · · ·
∑N

jN=1 and trace Tr means
the summation over all configuration of the set {σ = ±1}.
In the case that network topology is statistically homoge-
neous, the above equation can be simplified as

⟨Mn⟩
⟨M⟩n =

1
(2N)n

N∑
{ j}=1

Tr exp

−ϵ n∑
µ=1

n∑
ν=µ+1

σµσνJ jµ jν

 .
By using an approximation of exponential function in this
equation with a Taylor expansion neglecting the higher or-
der term and then transforming M to its standardized vari-
able x, we can obtain the steady state distribution of x as

P(x) =

∫ ∞
−∞

dy
2π

exp

ixy +
∞∑

k=2

(
i
√

2y
)k

2k
R(k)

 (1)

R(k) ≡
∑N
α=2(λα)−k(∑N

α=2(λα)−2
)k/2 . (2)

For given non-Gaussian SPO distribution P(x), we can de-
rive the set of moments {R(k)} by using the Equaton (1).
Then we can obtain the eigenvalues λα by solving the Equa-
tion (2).

3. Summary

In this study, we showed that the shape of order-
parameter distribution in noisy phase-oscillator network
systems is closely related to the network topology such as
the number of bypass connections in Watts-Strogatz net-
work. Then, we developed an approach to link the shape of
a non-Gaussian distribution of the standardized phase or-
der parameter to the eigenvalues of Laplacian connection
matrix of a noisy phase-oscillator network. Our method of
extracting the network structure from the macroscopic ob-
servables may be applied to monitor of the state of the net-
work structure in sensor network, traffic network, power-
supply network and neuronal network.
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