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Nonlinear dynamical systems are ubiquitous in the world
surrounding us. Naturally, understanding and controlling
such systems is an important goal of science and engineer-
ing. Over the past century, state-space and geometric view-
points have been the main tools for analysis and control of
nonlinear phenomena. However, due to advances in dig-
ital computation and data acquisition, we are facing new
challenges regarding efficient data-driven methods to un-
derstand and control complex nonlinear dynamical systems
for which traditional geometric viewpoints are not suffi-
cient.

Koopman operator theory, although not new, has shown
great potential to address computational challenges raised
by large data sets. The main reason is, independently of the
type of nonlinearity in the system, the Koopman operator is
linear and its eigenfunctions evolve linearly on the trajecto-
ries of the system. This linearity can lead to highly efficient
numerical methods for system identification and control.
However, it should be noted that the Koopman operator is
generally infinite dimensional; hence its direct use on dig-
ital computers might require infinite resources. To tackle
this issue, one can focus the attention on finite-dimensional
spaces of functions and analyze the effect of the Koopman
operator on them. However, the quality of such subspaces
directly impacts the accuracy of the Koopman approxima-
tions. The approximation is exact if the finite-dimensional
space is invariant under the effect of the operator. Hence,
it is of utmost importance to identify Koopman-invariant
subspaces from data.

Given that Koopman eigenfunctions naturally span in-
variant subspaces, our first task is to design numerical
methods to find Koopman eigenfunctions. Moreover, since
in practical settings only finitely many data points are avail-
able, we formulate our problem as a search in an arbitrary
finite-dimensional space of functions spanned by a dictio-
nary. Our primary goal is to find all Koopman eigenfunc-
tions in this space.

A necessary condition for a function in the space to be
a Koopman eigenfunction is to be captured by the eigen-
decomposition of the solution of the well-known Extended
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Dynamic Mode Decomposition (EDMD) algorithm. We
build on this observation and provide a necessary and suf-
ficient condition for a function to evolve linearly on data
based on applying EDMD forward and backward in time
and comparing the eigendecompositions. Furthermore, we
prove that given additional reasonable conditions on the
data sampling, the captured functions are all Koopman
eigenfunctions in the original space almost surely. The
identified eigenfunctions span a Koopman-invariant sub-
space. However, this subspace might not be maximal since
this method does not capture generalized Koopman eigen-
functions.

To capture the maximal Koopman-invariant subspace in
the original space, we provide an algorithmic procedure
termed Symmetric Subspace Decomposition (SSD) that it-
eratively prunes the original space by reducing its dimen-
sion such that after finite iterations, it captures all linear
evolutions in the data set. Under reasonable conditions on
the data sampling, we prove that the solution of the SSD
algorithm is the maximal Koopman-invariant subspace of
the original space of functions almost surely. Moreover,
given that in some applications, the data becomes avail-
able in a streaming fashion, we provide an extension of our
algorithm termed Streaming Symmetric Subspace Decom-
position (SSSD) that at each iteration, updates the previous
solution based on the availability of new data. SSSD re-
quires a small fixed memory independently of the size of
the data set. As a result, SSSD can also be useful for in-
variant subspace calculations using large data sets.

Finally, in some practical cases, the maximal Koopman-
invariant subspace of the original space might not contain
sufficient eigenfunctions to describe the behavior of the
system. To tackle this issue, we provide the Approximated-
SSD algorithm to allow for capturing more information
about the system’s behavior while tuning the accuracy of
the approximation.
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