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Abstract— P/T Petri nets are one kind of basic and use-
ful models for discrete event systems. And reachability
problem is one of the most important behavioral proper-
ties of Petri nets in determining its behavior. To consider
the reachability problem, from an initial state called an ini-
tial marking, M0 to a destination state called a destina-
tion marking Md are the fundamental problems of Petri
nets. There are some methods to solve such reachabil-
ity problems, one of such methods is to use the cover-
ability(reachability) tree, but this method requires a huge
amount of calculation in general, so the other method to use
matrix equations and reduction techniques has the advan-
tage, because the method can utilize the algebraic equation
properties of Petri nets. In this paper, we propose a modi-
fied algorithm of the Fourier-Motzkin method which is well
known as a solution of the state equation for the reachabil-
ity problem. The solutions which could not be found by a
conventional algorithm can be obtained by using the modi-
fied one.

1. Introduction

A Petri net is a particular kind of directed graph, together
with an initial state called the initial markings,M0. The un-
derlying graph of a Petri net is a directed, weighted, bipar-
tite graph consisting of two kinds of nodes, called places
and transitions, where arcs are either from a place to a tran-
sition or from a transition to a place. In graphical represen-
tation, places are drawn as circles, transitions as bars, and
arks are labeled with their weights. The behavior of sys-
tems can be described in terms of system, a state or mark-
ing in a Petri nets is changed according to the transition fir-
ing rules. Such Petri nets are effectively used for modeling,
analyzing, and verifying many discrete event systems[1].

In this paper, we are concerned with structural analysis
based on the linear algebra techniques and the state equa-
tion Ax = b := Md − M0, whereM0 andMd are initial and
destination marking vectors, respectively. All generators
for T-invariants and all minimal inhomogeneous(i.e., par-
ticular) solutions are needed for discussing the feasibility of
a group of firing count vectors,x, for the fixedb := Md−M0

[2],[3], where any firing count vector is expanded by means
of T-invariant generators and particular solutions [3]. We
also consider to modify the algorithm of Fourier-Motzkin
Method to find the solutions which could not be obtained
by using conventional Fourier-Motzkin Method.

In section 2, preliminaries are given, and modified al-
gorithm of Fourier-Motzkin method are described using an
example for finding the solutions which could not be ob-
tained by conventional method using the modified algo-
rithm in section 3. And section 4 is the conclusion of this
paper.

2. Preliminaries

2.1. State Equation

If the destination markingMd was assumed to be reach-
able from initial markingM0 through the firing sequence as
{t1, t2, · · · , td}, the state equation can be expressed as

Md = M0 + A
d∑

k=1

tk (1)

and eq.(1) can be described like as eq.(2) whenA ∈
Zm×n, b = Md − M0 ∈ Zm×1, x =

∑d
k=1 tk ∈ Zn×1

+

Ax= b. (2)

Then we can obtain the firing count vectorx to solve the
solutions of eq.(2), from initial markingM0 ∈ Zm×1

+ to des-
tination markingMd ∈ Zm×1

+ .

2.2. Fourier-Motzkin Method

The Fourier-Motzkin method is to obtain the set of all
elementary vector solutions as the nonnegative integer so-
lutions of Ax = 0m×1. And the algorithm of the Fourier-
Motzkin method is as follows [4][5].

<Algorithm of Fourier-Motzkin method>
Input: Incidence matrixA ∈ Zm×n, m, andn.
Output:The set of T-invariants including all minimal sup-
port T-invariants.
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Initialization:The matrixB is constructed by adjoining the
identity matrixEn×n to the bottom of the incidence matrix
A ∈ Zm×n, with B = [AT ,E]T ∈ Z(m+n)×n.
Step0:i = 1.
Step1:Select thei-th row of B. If the i-th row has no
nonzero element, theni = i + 1 and go to Step2. If the
i-th row has at least one nonzero element, then go to Step3.
Step2:If i ≦ m is satisfied, go to Step1, otherwise go to
Step4.
Step3:Add to the matrixB all the columns which are linear
combinations of pairs of columns ofB and which annul the
i-th row of B. And eliminate fromB the columns in which
thei-th element is nonzero. Now, let us call the new matrix
asB again. Then seti = i + 1 and go to Step2.
Step4:Each column of the submatrix which is obtained by
deleting the rows of the first to them-th from B is a mini-
mal nonnegative integer solution forAx= 0m×1.

But, this method can be applied toAx = 0, and this
means that obtained solutions are T-invariants. So, to ob-
tain the particular solutions(firing count vectors), we need
to make such changes to the eq.(2) considering the aug-
mented incidence matrix as follows:

Ã = [ A − b ] ∈ Zm×(n+1). (3)

then eq.(2) would be expressed by eq.(3) and augmented
x̃ ∈ Zn+1,

Ãx̃ = 0. (4)

Then, eq.(4) can be applied to the former algorithm.

3. Finding Particular Solutions which could not be Ob-
tained by using The Conventional Algorithm

3.1. Finding Particular Solutions by using The Conven-
tional Algorithm

Here, we would like to obtain particular solutions of
an example Fig.1 by using the conventional algorithm of
Fourier-Motzkin Method.

　　　　　 Fig.1 An example of a Petri net.

In this case, the incidence matrix ofA ∈ Zm×n is

A =

 −2 −1 0 0 1
1 2 −1 −1 0
0 0 2 1 −1

 ∈ Z3×5,

and the difference of markingb ∈ Zm×1 from M0 ∈ Zm×1
+ to

Md ∈ Zm×1
+ is

b = Md − M0 =

 1
1
2

 −
 1

0
0

 =
 0

1
2

 ∈ Z3×1.

Then the augmented matrix ofA can be described as fol-
lows:

Ã =

 −2 −1 0 0 1 0
1 2 −1 −1 0 −1
0 0 2 1 −1 −2

 ∈ Z3×6

by eq.(3). And by the algorithm in§2.2, we can express
the matrixB of Fig.1 usingB = [ Ã E ] ∈ Z(m+n+1)×(n+1), as
follows:

B =



−2 −1 0 0 1 0
1 2 −1 −1 0 −1
0 0 2 1 −1 −2
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


. (5)

From matrixB of eq.(5), T-invariants and particular solu-
tions are obtained by using the algorithm of the conven-
tional Fourier-Motzkin method as follows:

u1 = ( 1 0 1 0 2 )T , v1 = ( 0 3 0 5 3 )T ,
u2 = ( 1 1 0 3 3 )T ,

(6)

whereui ∈ U := {ui ∈ Zn×1
+ } ; Ax = b T-invariants and

v j ∈ V := {v j ∈ Zn×1
+ } ; Ax= b particular solutions.

When we think about a particular solution of

v j = ( 0 2 1 2 2 )T , (7)

this solution is also the minimal vector like as eq.(6). Be-
cause not every element is smaller than the other solutions’
elements. For example, the second element of eq.(7)2 is
smaller thanv1’s second element of3, so eq.(7) can not be
included by other obtained particular solution ofv1.

Hence, this means that we could not obtain all of the
particular solutions by using the conventional algorithm of
the Fourier-Motzkin Method.
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3.2. Finding Particular Solutions by using a Modified
Algorithm

All of the particular solutions could not be obtained
by using conventional algorithm of the Fourier-Motzkin
Method in §3.1. So, we guess the reason why, and this
would be the algorithm of step 3 in§2.2 is not enough to
find the all of combinations to make annul thei-th row of
B.

In other words, annulment of thei-th row of B can be
made by not only pairs of linear combinations, but more
than 2 columns combinations. By using all of the combi-
nations to make annul thei-th row of B, it would be able to
find the new solutions which could not be found by using
the conventional algorithm of Fourier-Motzkin Method.

Then the modified algorithm of the Fourier-Motzkin
Method to improve this problem is as follows:

<Algorithm of Modified Fourier-Motzkin method>
Input: Incidence matrixA ∈ Zm×n, m, andn.
Output:All of minimal T-invariants.
Initialization:The matrixB is constructed by adjoining the
identity matrixEn×n to the bottom of the incidence matrix
A ∈ Zm×n, whereB = [AT ,E]T ∈ Z(m+n)×n.
Step0:i = 1.
Step1:Select thei-th row of B. If the i-th row has no
nonzero element, theni = i + 1 and go to Step2. If the
i-th row has at least one nonzero element, then go to Step3.
Step2:If i ≦ m is satisfied, go to Step1, otherwise go to
Step8.
Step3:If the i-th row of B has at least one pair of positive
and negative elements, go to Step4, otherwise go to Step7.
Step4:Aiming the i-th row of B(i.e., the old matrix), add
directly the j-th column to thek-th column, where the (i, j)
element is positive and the (i, k) element is negative. Ap-
ply the minimal vector criterion to the above new column
vector and the column vectors each of which has the zero
i-th element on the old matrixB. Adjoin all the remained
columns after this criterion to the old matrixB. Then call
this new matrix asB again. Then go to Step5.
Step5:If the i-th element of all the adjoined column vectors
of the new matrixB is zero, go to Step7, otherwise go to
Step6.
Step6:Repeat Step4 to the matrixB. However, the (j, k)
pair should be always new. Then, go to Step5.
Step7:Delete, fromB, all the columns each of which has
nonzero element on thei-th row of B. Now, let us call the
new matrix asB again. Then seti = i + 1 and go to Step2.
Step8:Each column of the submatrix which is obtained by
deleting the rows of the first to them-th from B is a mini-
mal nonnegative integer solution.

So, let us try to obtain the solutions using this modified
algorithm. Apply this algorithm to the eq.(5), then Ma-
trix B is added to the columns which annul the first row
of B made by positive and negative combination without
weights, just as shown in eq.(8)

B =



−2 −1 0 0 1 0 −1 0
1 2 −1 −1 0 −1 1 2
0 0 2 1 −1 −2 −1 −1
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 1
0 0 0 0 0 1 0 0


. (8)

In eq.(8), the 7th and 8th columns are added. And next, try
to make more new columns by using added columns and
other columns in combination again.

B =



−2 −1 0 0 1 0 −1 0 0
1 2 −1 −1 0 −1 1 2 1
0 0 2 1 −1 −2 −1 −1 −2
1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 1 2
0 0 0 0 0 1 0 0 0


.

(9)
Then 9th column can be added as shown in eq.(9). But this
column is not a minimal vector, because when considering
about from 4th row to 9th row of 8th and 9th column, each
element of the 9th column(added column) are not smaller
than or equal to each element of the 8th column(already
existing column). Then this 9th column is deleted from
Matrix B.

Now there are no more combination columns to add to
the MatrixB, so the operation to the first row is over. Then
all the columns which have nonzero elements in the first
row of B are deleted, and the rest of the columns will be
the new MatrixB. And the same operation will be done to
the next row of the new MatrixB.

B =



0 0 0 0 0 0 0
−1 −1 −1 2 1 1 1

2 1 −2 −1 1 0 −3
0 0 0 0 0 0 0
0 0 0 1 1 1 1
1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 0 0 1 1 1 1
0 0 1 0 0 0 1


. (10)

In the second row, the new columns from 5th to 7th by a
combination of positive and negative from 1st column to
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4th column are added as shown in eq.(10). The column
operation in the second row can not apply anymore, so all
the columns each of which have nonzero elements in the
second row ofB are deleted, and the rest of the columns
will be the new MatrixB again, and the same operation
will be applied to the next row. In the 3rd row, add the new

columns which are combinations of positive and negative.
But in this case, the new combinations are increased by new
combinations with added columns and existing columns.
Then the algorithm can not be done to the end. Eq.(13)

is the calculation result to the middle, but on the 10th col-
umn(marked ‘*’), this solution is already obtained by using
the conventional algorithm in eq.(6). And paying atten-
tion to the 18th column(marked ‘**’), this is the solution
just shown in eq.(7). So, the new solution which could
not be found by using the conventional algorithm could be
obtained by using the modified algorithm of the Fourier-
Motzkin Method, even though the algorithm could not be

done.

4. Conclusions

To find T-invariants and particular solutions for state
equation in P/T Petri nets can be obtained by using the
Fourier-Motzkin Method. But some particular solutions
could not be obtained by using the algorithm of the conven-
tional Fourier-Motzkin Method. In this paper, some of the
particular solutions which could not be obtained by using
the conventional algorithm of the Fourier-Motzkin Method
can be obtained by using a modified algorithm have been
shown.

The algorithm is not completed because the calculation
could not be done to the end. But a part of the unobtained
particular solution could be found by using the modified
algorithm.

In future studies, we would like to improve the algorithm
to obtain all of the unobtainable solutions and also to deal
bigger P/T Petri nets using the Fourier-Motzkin Method.
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