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Abstract—In this paper, we discuss a property of the
factorization method for polynomials using the inverse z-
transformation. The method solves the factorization for
polynomials by reducing the problem of two dimensional
convolution to the problem of one dimensional convolu-
tion and solving several systems of linear equations. How-
ever, the method can’t always obtain a factorization for all
polynomials. Therefore, we show a necessary condition for
solving by the method.

1. Introduction

Symbolic algebra system such as Mathematica or Maple
is well known for solving numerical formulas. These sys-
tems usually treat strict solutions. However, in image
processing, given images almost include observation error
and can not treat strictly. So, we have proposed a restor-
ing method for degraded images by using the inverse z-
transformation [1]. The method cannot only restore de-
graded images by numerical calculation but also apply to
factorize polynomials in the real field. However, in a rare
case, a system of linear equations which generated in the
algorithm can not be solve because of linear dependent. In
this paper, we clarify the condition when the phenomenon
happens in the factorization method.

In the following sections, we discuss the case of only two
variables to avoid complicated notations but all results can
extend even in the case of more than three variables.

2. Polynomials and Convolution

Let G(x, y) be a given polynomial with two variables.
Two polynomials F(x, y) and H(x, y) are its factors. Then,
the given polynomial G(x, y) is resolved to the product of
these two polynomials as follows:

G(x, y) = H(x, y) · F(x, y) (1)

Let G = g(i, j), H = h(i, j) and F = f (i, j) be matrices
obtained by the inverse z-transformation of polynomials
G(x, y), H(x, y) and F(x, y), respectively. Here, the matrix

G and the polynomial G(x, y) satisfy

G(x, y) =
M∑

i=1

N∑
j=1

g(i, j)xi−1y j−1, (2)

where M − 1 and N − 1 are degrees of two variables x and
y, respectively. Then, we get the relation among three ma-
trices as follows:

G = H ∗ F (3)

where ∗ means convolution and we obtain

g(m, n) =
∑
i=1

∑
j=1

h(m+1−i, n+1− j) f (i, j) (4)

for 1 ≤ m ≤ M and 1 ≤ n ≤ N.

Example 1 We try to obtain factors of a given polynomial

G(x, y) = 6 + 10x + 4x2 + 21y + 35xy + 14x2y

+9y2 + 15xy2 + 6x2y2. (5)

By the inverse z-transformation of Eq. (5), we obtain a
matrix

G =

 6 21 9
10 35 15
4 14 6

 .
Put two matrices be

H =
(

2 1
2 1

)
, F =

(
3 9
2 6

)
.

Then, it holds

G =
(

2 1
2 1

)
∗
(

3 9
2 6

)

=

 2 · 3 1 · 3+2 · 9 1 · 9
2 · 3+2 · 2 1 · 3+1 · 2+2 · 9+ 2· 6 1 · 9+1 · 6

2 · 2 1 · 2+2 · 6 1 · 6

 .
Hence, two polynomials obtained by the z-transformation
of these two matrices

H(x, y) = 2 + 2x + y + xy

F(x, y) = 3 + 2x + 9y + 6xy
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satisfy the relation Eq. (1) and become two factors of the
given polynomial G(x, y).

In the next section, we shall explain a finding method of
above two matrices H and F.

3. A Factorization Method for Polynomials

In the case of factorization for polynomials with one
variable, it is known that every polynomials with n degree
have n zero points in the imaginary number field [2]. Also,
we can obtain those all zero points by using the Durand-
Kerner-Aberth method (DKA method) that is a numerical
calculation method [3]. By using the method, it is easy
to obtain the factorization for polynomials with one vari-
able in the mean of numerical calculations. However, in
the case of more than two variables, it is impossible to ob-
tain all factors of a given polynomial by the same method
since it can’t be always decomposed to several polynomi-
als with one variable even in the imaginary field. There-
fore, we proposed an improvement of the method for one
variable to factorize polynomials with more than two vari-
ables. The proposed method makes factorization of a given
polynomial by using the DKA method and solving some
systems of linear equations.

The following algorithm is the proposed factorization
method for polynomials with two variable to decompose
two polynomials. However, by repeat of the method, we
can obtain all irreducible polynomials of each given poly-
nomial.

Factorization of polynomials with two variables
(i) Let G(x, y) be a given polynomial with two variables

and g(m, n) be a M ×N matrix obtained by the inverse
z-transformation for the polynomial. Here, put

g(m) =
N∑

n=1

g(m, n) (6)
for m = 1, 2, · · · ,M.

(ii) Let G(x) be a polynomial obtained by the z-
transformation of the matrix g(m). Then, the polyno-
mial G(x) with one variable is factored to the product
of irreducible factors in the real number field by using
the DKA method.

(iii) Let suppose K × L to be the size of a finding matrix
h(m, n). If we can not select new size for the matrix,
we stop. Otherwise, we try to find a polynomial H(x)
that is a product of some irreducible factors of G(x)
with K − 1 degrees. Then, from the coefficients of the
expansion of the polynomial H(x), we obtain sums pk

of each row of the finding matrix h(m, n):

pk =

L∑
n=1

h(k, n) (7)

for k = 1, 2, · · · ,K. Here, to avoid multiple solutions
by constant numbers, we add a condition of normal-
ization such that

∑
pk = 1.

(iv) Let solve one dimensional factorization of the con-
volution of two matrices h(1, n) and f (1, n) by using
p1 =

∑L
n=1 h(1, n) and the DKA method.

(v) For each k = 2, 3, · · · ,M − 1, we solve a system of
(N + 1) linear equations:

h(k, n) ∗ f (k, n) = g(k, n)
L∑

n=1

h(k, n) = pk (8)

where 1 ≤ n ≤ N. Then, we obtain all values of two
matrices h(m, n) and f (m, n).

(vi) We verify that the convolution of obtained two ma-
trices h(m, n) and f (m, n) is equal to g(m, n). If the
difference is less than a threshold, we obtain two find-
ing polynomials H(x, y) and F(x, y) by applying the
z-transformation to two matrices h(m, n) and f (m, n)
and stop. Otherwise, return to the Step (iv) and try
again with another selection of factors. If it is not suf-
ficient, return to the Step (iii) and change the size K×L
of the matrix h(m, n).

Example 2 Let a given polynomial G(x,y) to be

G(x, y) = 3 + 8x + 13y + 13x2 + 25xy + 25y2

+6x3 + 31x2y + 43xy2 + 7y3

+12x3y + 49x2y2 + 8xy3

+18x3y2 + 9x2y3.

Then, by the inverse z-transformation, it is translated to a
4 × 4 matrix:

g(m, n) =


3 13 25 7
8 25 43 8
13 31 49 9
6 12 18 0

 .
Then, we get

g(1) = 3 + 13 + 25 + 7 = 48
g(2) = 8 + 25 + 43 + 8 = 84
g(3) = 13 + 31 + 49 + 9 = 102
g(4) = 6 + 12 + 18 + 0 = 36.

Next, in the real number field, we obtain only one irre-
ducible factorization by the DKA method as follows:

G(x) = 48 + 84x + 102x2 + 36x3

= 6(2 + x)(4 + 5x + 6x2).

Here, when we suppose the size of the matrix h(m, n) is
2 × 2, the size of the other matrix f (m, n) becomes 3 × 3.
Therefore, it holds H(x) = 2 + x. From the normalization
of coefficients, we obtain

p1 =
2

2 + 1
=

2
3

p2 =
1

2 + 1
=

1
3
.
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Next, we solve one dimensional convolution h(1, n) ∗
f (1, n) = g(1, n). Since the factorization must satisfy each
coefficient of factors of G(1, y) =

∑4
j=1 g(1, j)y j−1 with a

real number, we obtain only one factorization

G(1, y) = 3 + 13y + 25y2 + 7y3

= (3 + y)(1 + 4y + 7y2).

Here, from p1 =
2
3 , we have

h(1, n) =
1
6

(
3 1

)
, f (1, n) = 6

(
1 4 7

)
.

Next, we solve a system of 5 linear equations:
1
2 0 0 6 0
1
6

1
2 0 24 6

0 1
6

1
2 42 24

0 0 1
6 0 42

0 0 0 1 1




f (2, 1)
f (2, 2)
f (2, 3)
h(2, 1)
h(2, 2)

 =


8
25
43
8
1
3


and we get

h(2, n) =
(

1
3 0

)
, f (2, n) = 6

(
2 5 8

)
.

Finally, we solve a system of 3 linear equations gotten from
the convolution for 1 ≤ l ≤ 3

h(m, n) ∗ f (m, n) = g(3, l),

we get
f (3, n) = 6

(
3 6 9

)
.

Thus, we obtain two matrices

h(x, y) =
1
6

(
3 1
2 0

)
, f (x, y) = 6

 1 4 7
2 5 8
3 6 9

 .
Finally, by the z-transformation, we get two irreducible fac-
tors as follows:

H(x, y) =
1
6

(3 + 2x + y)

F(x, y) = 6(1 + 2x + 4y + 3x2 + 5xy + 7y2

+6x2y + 8xy2 + 9x2y2).

4. A Solvable Condition for Simultaneous Linear
Equations

The above algorithm for factorization of polynomials
cannot always solve simultaneous linear equations in the
Step (v). In a rare case, the simultaneous linear equations
become linearly dependent. For example, let us consider
the case:(

0.5 0
h(2, 1) h(2, 2)

)
∗
(

2 0
f (2, 1) f (2, 2)

)
=

 1 0 0
0 2 0
0 0 1

 .

Then, we obtain a system of linear equations as follows:
1 1 0 0
2 0 0.5 0
0 2 0 0.5
0 0 0 0




h(2, 1)
h(2, 2)
f (2, 1)
f (2, 2)

 =


0.5
0
2
0

 .
In this time, we cannot solve this equation because all el-
ements of the bottom line of the matrix are equal to 0 and
the system obviously becomes linear dependent. However,
the system has some solutions. For example,

H =
(

0.5 0
0 0.5

)
, F =

(
2 0
0 2

)
is one of those solutions. Please remark that two matrices
are the same form without a constant factor.

A solvable condition for simultaneous linear equations
in the Step (v) is given by the following theorem.

Theorem 1 In the Step (v) of the proposed algorithm,
we can solve all systems of linear equations for k =
2, 3, · · · ,M − 1 if the next inequality holds. L∑

n=1

h(1, n)



·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h(1, 1)
. . . 0 f (1, 1)

. . . 0

h(1, 2)
. . .

... f (1, 2)
. . .

...
...

. . .
...

...
. . . 0

h(1, L−1)
. . . 0

...
. . . f (1, 1)

h(1, L)
. . .h(1, 1) f (1, I)

. . . f (1, 2)

0
. . .h(1, 2) 0

. . .
...

...
. . .

...
...
. . .

...

0
. . .h(1, L) 0

. . . f (1, I)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, 0

where I = N − L + 1 and the size of the determinant is
(N + 1) × (N + 1).

Proof: Every Systems of N + 1 linear equations in the Step
(v) always satisfy

h(1, 1)
. . . 0 f (1, 1)

. . . 0

h(1, 2)
. . .

... f (1, 2)
. . .

...
...
. . . 0

...
. . . 0

h(1, L)
. . .h(m, 1) f (1, I)

. . . f (m, 1)

0
. . . h(1, 2) 0

. . . f (1, 2)
...
. . .

...
...
. . .

...

0
. . .h(1, L) 0

. . . f (1, I)
0 . . . 0 1 . . . 1





f (k, 1)
f (k, 2)
...
...

f (k, I)
h(k, 1)
h(k, 2)
...
...

h(k, L)
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=



g(k, 1)−
k−1∑
i=2

I∑
j=1

h(k+1−i, 2− j) f (i, j)

g(k, 2)−
k−1∑
i=2

I∑
j=1

h(k+1−i, 3− j) f (i, j)

...

g(k,N)−
k−1∑
i=2

I∑
j=1

h(k+1−i,N+1− j) f (i, j)

pk


for k = 2, 3, · · · ,M − 1. The determinant of the simultane-
ous linear equations is independent to k and it holds∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h(1, 1)
. . . 0 f (1, 1)

. . . 0

h(1, 2)
. . .

... f (1, 2)
. . .

...
...
. . . 0

...
. . . 0

h(1, L)
. . .h(1, 1) f (1, I)

. . . f (1, 1)

0
. . .h(1, 2) 0

. . . f (1, 2)
...
. . .

...
...
. . .

...

0
. . .h(1, L) 0

. . . f (1, I)
0 . . . 0 1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)I
L∑

n=1

h(1, n)·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h(1, 1)
. . . 0 f (1, 1)

. . . 0

h(1, 2)
. . .

... f (1, 2)
. . .

...
...

. . .
...

...
. . . 0

h(1, L−1)
. . . 0

...
. . . f (1, 1)

h(1, L)
. . .h(1, 1) f (1, I)

. . . f (1, 2)

0
. . .h(1, 2) 0

. . .
...

...
. . .

...
...
. . .

...

0
. . .h(1, L) 0

. . . f (1, I)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Hence, we have Theorem 1.
In the theorem, the equation

∑L
n=1 h(1, n) = 0 means

p1 = 0 in the Step (iv). In this case, we cannot determine
the pair of h(k, n) and f (k, n) uniquely. On the other case,
that is the determinant is equal to zero, two matrices h(1, n)
and f (1, n) become linear dependent in the mean of time
lag. In both cases, we can decide the solvability in the Step
(v) if we check the value p1 obtained in the Step (iii) and
two matrices of h(1, n) and f (1, n) obtained in the Step (iv).

Example 3 In the Step (v), let k = 2 and put

H =

(
a b

h(2, 1) h(2, 2)

)
F =

(
c d e

f (2, 1) f (2, 2) f (2, 3)

)
.

Then, the system of linear equations becomes


a 0 0 c 0
b a 0 d c
0 b a e d
0 0 b 0 e
0 0 0 1 1




f (2, 1)
f (2, 2)
f (2, 3)
h(2, 1)
h(2, 2)

 =


g(2, 1)
g(2, 2)
g(2, 3)
g(2, 4)

p2

 .
By the expansion of the determinant for the bottom row to
obtain the small determinants, we get∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a 0 0 c 0
b a 0 d c
0 b a e d
0 0 b 0 e
0 0 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣∣∣∣
a 0 0 0
b a 0 c
0 b a d
0 0 b e

∣∣∣∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣∣∣∣

a 0 0 c
b a 0 d
0 b a e
0 0 b 0

∣∣∣∣∣∣∣∣∣∣∣
= −a

∣∣∣∣∣∣∣∣
a 0 c
b a d
0 b e

∣∣∣∣∣∣∣∣ − b

∣∣∣∣∣∣∣∣
a 0 c
b a d
0 b e

∣∣∣∣∣∣∣∣
= −(a + b)

∣∣∣∣∣∣∣∣
a 0 c
b a d
0 b e

∣∣∣∣∣∣∣∣ .
Therefore, if we put a = b = c = e = 1, d = 2, we can-
not solve the system of linear equations because it becomes
linear dependent.

5. Conclusions

In this paper, we discussed a property of our proposed
factorization method for polynomials using the inverse z-
transformation. The method solves the factorization for
polynomials by reducing the problem of two dimensional
convolution to the problem of one dimensional convolu-
tion and solving some systems of linear equations. In the
method, we cannot always obtain factorization for some
polynomials because simultaneous linear equations gener-
ated in the method are not always linear independent. So,
we showed the condition when such a bad case happens. In
the future work, the improvement of our method such that
it can solve factorization even in the bad case is remained.
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