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Abstract—For the case that p is any prime number, we
have already constructed all CR (complement reverse) se-
quences in the de Bruijn sequences of length 22p+1. With
the help of the Dyck language, we characterize CR se-
quences in the de Bruijn sequences of length 22m+1 where
m (≥ 4) is a non-prime number. Then, we show that for any
odd number n, there exist CR sequences in the de Bruijn
sequences of length 2n, which completely settles the fun-
damental problem posed by Fredricksen on existence of the
CR sequences. Consequently, we establish an algorithm for
generating all CR sequences in the de Bruijn sequences of
length 2n for any odd n.

1. Dyck Language

Following [4], we define the Dyck language L(Dn) (n ≥
1) from the viewpoint of symbolic dynamics. We set Σ =
{αm, βm : 1 ≤ m ≤ n}. For each m (1 ≤ m ≤ n), αm

is called a negative symbol while βm is called a positive
symbol. We define an inverse monoid (with zero) Dn: It
has generators αi, β j (1 ≤ i, j ≤ n) and 111, whose relations

are αi · β j =

{
111 if i = j,
0 otherwise, and γ ·111 = 111 · γ = γ, γ · 0 =

0 · γ = 0 ( γ ∈ Σ ∪ {111} ), 0 · 0 = 0.
We call elements u = u1u2 · · · uk ∈ Σk words or blocks

over Σ of length k (k ≥ 1). A word of length k is simply
called a k-word. We use Σ∗ to denote the collection of all
words over Σ and the empty word ϵ. We use red() to denote
a mapping from Σ∗ to the inverse monoidDn by letting for
γ = γ1γ2 · · · γk ∈ Σ∗ (k ≥ 1), red(γ) = γ1 · γ2 · · · · · γk and
red(ϵ) = 111.

The Dyck language L(Dn) is defined by L(Dn) = {u ∈
Σ∗ : red(u) , 0}. If red(u) = 111 for u ∈ Σ∗, then u is said to
be balanced.1 The empty word ϵ is balanced.

The set of balanced words in L(D1) consists of all reg-
ular parenthesis structures. In fact, for n = 1, denoting
α1 = ( and β1 = ), we obtain all regular parentheses struc-
tures with up to three pairs of parentheses:

( ), ( ( ) ), ( )( ), ( ( ( ) ) ), ( ( )( ) ), ( ( ) )( ), ( )( ( ) ), ( )( )( ).
(1)

1In [5], the language with n types of balanced parentheses are said to
be the Dyck language.

Remark 1 It is well known that the k pairs of parentheses
are enumerated by the Catalan numbers: 1

k+1

(
2k
k

)
.

2. Construction of a Prototype of CR Graphs

Let Gn = (Vn,An) be the de Bruijn graph with the set
Vn = {0, 1}n−1 of vertices and the set An = {0, 1}n of arcs.
De Bruijn sequences of length 2n are exactly Eulerian cir-
cuits in the de Bruijn graph Gn.

For a ∈ {0, 1}, we use a to denote the binary complement
of a, i.e. 0 = 1 and 1 = 0. We also treat a time-reversal of
sequences: For a sequence X = (Xi)N−1

i=0 over a finite alpha-
bet Σ, the reverse r X of X is defined by r X = (Xi)0

i=N−1.
A (binary) cycle of length k is a sequence of binary k-

word a1a2 · · · ak taken in a circular order. In the cycle
a1a2 · · · ak, a1 follows ak, and a2 · · · aka1, · · · , aka1 · · · ak−1
are all the same cycle as a1a2 · · · ak. Two sequences X =
(Xi)N−1

i=0 and Y = (Yi)N−1
i=0 are said to be equivalent, in sym-

bols X ≃ Y, if X and Y are the same cycle.
Now we can define the following.

Definition 1 If X ≃ r X or equivalently X ≃ r X, then X is
called CR (complement reverse) sequence.

By the definition, if X is a CR sequence, so are X and r X.
In what follows, let X = (Xi)N−1

i=0 be a de Bruijn sequence
of length 2n if it is not stated otherwise.

It was pointed out in [1] that for even n ≥ 4, X ; r X
holds, and on the other hand that for n = 5, X ≃ r X oc-
curs. In fact, 32 pairs of CR sequences exist for n = 5.
Naturally the following problem was posed by Fredrick-
sen in [1]: Show that there exists a CR sequence whenever
n (≥ 3) is odd. In [2], the following characterization of CR
sequences were presented.

Lemma 1 (Etzion and Lempel [2]) Let Y = (Yi)N−1
i=0 be a

sequence over {0, 1}, which is not necessarily a de Bruijn
sequence. The sequence Y is a CR sequence if and only if
N is even and Y ≃ rww for an N/2-word w.

For words u and v, we use uv to denote a concatenation of
u and v.

We set n = 2m + 1 (m ≥ 1). Since n − 1 = 2m is even,
in view of Lemma 1, the set V2m+1 = {0, 1}2m of vertices
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includes all 2m CR sequences of length 2m. To distinguish
such CR sequences of length 2m from CR sequences in
question of length 2n, we refer to such CR sequences as CR
vertices or CR 2m-words. We use VCR

n (⊂ Vn) to denote
the set of CR vertices. Since CR 2m-words are in the form
of rww where w ∈ {0, 1}m, a total order relation ≤ on VCR

n
is defined by the following: for any ruu and rvv in VCR

n ,
ruu ≤ rvv if and only if

u12m−1 + u22m−2 + · · · + um ≤ v12m−1 + v22m−2 + · · · + vm,

where u = u1u2 · · · um and v = v1v2 · · · vm are in {0, 1}m.
Thus we number all the elements in VCR

n : v(0) < v(1) <
· · · < v(2m−1).

Definition 2 The weight W(Y) of a sequence Y = (Yi)N−1
i=0

over {0, 1} is defined to be the number of nonzero digits
among the N Yi’s, i.e., W(Y) =

∑N−1
i=0 Yi.

Using this, we divide Vn into three disjoint subsets V−n =
{v ∈ Vn : W(v) < m}, V0

n = {v ∈ Vn : W(v) = m}, and
V+n = {v ∈ Vn : W(v) > m}. Note that VCR

n ⊂ V0
n since

W(v) = m for v ∈ VCR
n .

Further, we divide V0
n into four disjoint subsets V00

n =

{v ∈ V0
n : v = 0w0, w ∈ {0, 1}2(m−1)}, V01

n = {v ∈
V0

n : v = 0w1, w ∈ {0, 1}2(m−1)}, V10
n = {v ∈ V0

n : v =
1w0, w ∈ {0, 1}2(m−1)}, and V11

n = {v ∈ V0
n : v = 1w1, w ∈

{0, 1}2(m−1)}. In the case that m = 1, we think of w ∈ {0, 1}0
as w = ϵ.

For integers a and b, if a is a divisor of b, we write a|b.
For m ≥ 2, we use d(m) to denote the number of the divisors
of m. For a word w, we use wk to denote the concatenation
of k copies of w, i.e., w · · ·w︸ ︷︷ ︸

k

. We use [x] to denote the great-

est integer not exceeding x. We use S to denote the shift
transformation on {0, 1}2m, i.e., S (v1, v2, · · · , v2m−1, v2m) =
(v2, v3, · · · , v2m, v1) for v = v1v2 · · · v2m ∈ {0, 1}2m.

Definition 3 For m (≥ 2), 2(d(m) − 1) vertices in VCR
n in

the form of v(i(k)) = (1k0k)
m
k and v(i(k)) with k ≥ 2 are called

the neutral vertices, where k|m and i(k) = 22k[ m
k ]+k−2k

2k+1 . We
use VCR, ν

n to denote the set of the neutral vertices in VCR
n .

For each j = 1, 2, · · · , k − 1, S j(v(i(k))) is in V11
n . Such

vertices in V11
n are also called neutral. We use V11, ν

n to
denote the set of the neutral vertices inV11

n . The setV00, ν
n

of the neutral vertices inV00
n is complementarily defined.

First we construct a directed graph G0
n associated with

the de Bruijn graph Gn. We set Wn = {λ} ∪ Vn \ V+n .
For two vertices of the forms u = a1a2 · · · an−1 and v =
a2a3 · · · an inWn, the binary n-word a1a2 · · · an is defined
as an arc from u to v. The obtained subgraph of Gn is not
Eulerian since two types of arcs in Gn are not presented:
u1 where u ∈ V0

n is in the form of u = 0v; and 1u where
u ∈ V0

n is in the form of u = v0. Corresponding all such
arcs each in Gn: u1 where u = 0v ∈ V0

n; and 1u where
u = v0 ∈ V0

n, we add an arc uλ from u to λ for every u =

0v ∈ V0
n; and an arc λu from λ to u for every u = v0 ∈ V0

n.
The resulting directed graph is Eulerian, which we use G0

n
to denote.

Second we modify the directed graph G0
n to obtain a

prototype of CR graphs. Except the neutral vertices in
VCR

n ∪V11
n , we split every vertex v ∈ V0

n into two vertices:
v with arcs 0v and v0; and v+ with arcs 1v+ and v+1, as

in the diagram:
0v↘ ↗ v0

◦v
1v↗ ↘ v1

into

0v−−−−−→
v
◦ v0−−−−−→

1v+−−−−→
v+
◦ v+1−−−−→

.

Then, other than the neutral vertices, for every v ∈ V0
n, the

copied vertex v+ occurs in a single loop λ1iv+1 jλ where
0 ≤ i + j ≤ m. We delete all such single loops. On the
other hand, for each pair of neutral vertices v(i(k)) and v(i(k))

in VCR
n , we have an arc v(i(k))0kv(i(k)) from v(i(k)) to v(i(k)),

where k|m with k ≥ 2, and i(k) is as in Definition 3. For
each k, we delete such an arc from v(i(k)) to v(i(k)). Then we
add an arc from λ to v(i(k)) and label it as λv(i(k)) while we
add an arc from v(i(k)) to λ labeled as v(i(k))λ. Thus we obtain
an Eulerian graph with the vertex set {λ}∪(V0

n\V00, ν
n )∪V−n ,

which we use G−n to denote. We call it the prototype of CR
graphs.

3. Construction of CR Graphs

Now we are in a position to construct CR graphs by mod-
ifying the directed graph G−n . For the case m = p where p
is a prime number, we have already constructed the set of
CR graphs, which yields all CR sequences in the de Bruijn
sequences of length 22p+1 in [3]. Hence, in what follows,
we suppose m (≥ 2) is a non-prime number, which implies
m ≥ 4.

First, we replace the vertex λ and its all 4(d(m) − 1) arcs
labeled λv(i(k)) or v(i(k))λ, where v(i(k)) ∈ VCR, ν

n , by 2(d(m) −
1) arcs from v(i(k)) to v(i(k)), where k|m with k ≥ 2, and i(k) is
as in Definition 3. For each k, the resulting two arcs from
v(i(k)) to v(i(k)) are labeled the same as v(i(k))λv(i(k)).

Choose v(i) ∈ VCR
n in G−n and fix it. If v(i) is not the

neutral vertex, i.e., v(i) ∈ VCR
n \ VCR, ν

n , then we add a loop,
an arc from v(i) to v(i), labeled v(i)λv(i). If v(i) is the neutral
vertex, i.e., v(i) = v(i(k)) or v(i) = v(i(k)), then do nothing.

Next, if v(i) ∈ VCR
n \ VCR, ν

n , then we split every pair
of neutral vertices v(i(k)) and v(i(k)) in VCR, ν

n each into two
vertices similarly as in the above diagram, which leads to

0v(i(k))
−−−−−−−−−→ v(i(k))

◦
v(i(k))λv(i(k))

−−−−−−−−−−−−−−−→v(i(k))
◦ v(i(k))0−−−−−−−−→

1v(i(k))+
−−−−−−−−−−→ v(i(k))+

◦
v(i(k))+λv(i(k))+
−−−−−−−−−−−−−−→v(i(k))+

◦ v(i(k))+1−−−−−−−−−−→

.

(2)
On the other hand, if v(i) is the neutral vertex, i.e., ∃ k0 (k0 ≥
2, k0|m), v(i) = v(i(k0)) or v(i) = v(i(k0)), then we split both
neutral vertices v(i(k0)) and v(i(k0)) in VCR, ν

n each into two
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vertices as in the following diagram:

1v(i(k0))+
−−−−−−−−−−−→ v(i(k0))+

◦
v(i(k0))+λv(i(k0))
−−−−−−−−−−−−−−→v(i(k0))

◦ v(i(k0))0−−−−−−−−−→

0v(i(k0))
−−−−−−−−−→ v(i(k0))

◦
v(i(k0))λv(i(k0))+
−−−−−−−−−−−−−−→v(i(k0))+

◦ v(i(k0))+1−−−−−−−−−−→

,

while we split the other pairs of neutral vertices v(i(k)) and
v(i(k)) (k , k0) in VCR, ν

n each into two vertices in the same
way as in the above diagram (2).

Eventually, for each v(i) ∈ VCR
n , we obtain an Eulerian

graph with the vertex set (V0
n\V00, ν

n )∪V−n ∪VCR, ν+
n , where

VCR, ν+
n = {v(i(k))+, v(i(k))+ : v(i(k)), v(i(k)) ∈ VCR, ν

n }, which
we use Hv(i) to denote. We call it the CR graph associated
with v(i) since Eulerian circuits in Hv(i) yield CR sequences.
Noting that the vertex sets are the same for all v(i) ∈ VCR

n ,
we writeWCR

n = (V0
n \V00, ν

n )∪V−n ∪VCR, ν+
n . UsingBv(i) to

denote the set of arcs in Hv(i) , we write Hv(i) = (WCR
n ,Bv(i) ).

At this stage we have 2m CR graphs. It is worth noting that
Hv(i) and Hv(i) are graph isomorphic. In symbols, we write
Hv(i) ≃ Hv(i) .

4. An Algorithm for Generating All CR sequences

Using the notion of CR vertex, in [3], we obtain a refine-
ment of Lemma 1 as follows, which plays crucially impor-
tant roles in constructions of CR sequences.

Lemma 2 ([3]) Let X ≃ rww be a CR sequence in the de
Bruijn sequence of length 22m+1, where w = w1w2 · · ·w22m ∈
{0, 1}22m

. Then there exists a unique CR vertex v ∈ VCR
2m+1

such that

v = rw1w2 · · ·wmw1w2 · · ·wm

= w22m−m+1 · · ·w22m−1w22m
rw22m−m+1 · · ·w22m−1w22m .

(3)

Moreover, the unique v occurs in X twice in the form of 0v1
and 1v0 while the other CR vertices u ∈ VCR

2m+1 occurs only
once in w in the form of 1u1 or 0u0.

As in the previous section, we suppose m (≥ 4) is a non-
prime number. For a fixed v(i) ∈ VCR

n , since Hv(i) is Eu-
lerian, we obtain an Eulerian circuit in Hv(i) . The circuit
exhibits one of (2(d(m) − 1) − 1)! circular permutations of
elements in VCR, ν

n . Apart from the case m = p where p is
a prime number, all the circuits do not yield CR sequences
if m is a non-prime number. To construct all CR sequences
from the Eulerian circuits in CR graphs, we introduce

Definition 4 For each neutral vertex v(i(k)) ∈ VCR, ν
n , where

k|m with k ≥ 2, and i(k) is as in Definition 3, the pair
0v(i(k))λv(i(k))0 and 1v(i(k))λv(i(k))1 are said to be balanced.
Similarly, the pair 0v(i(k))λv(i(k))1 and 1v(i(k))λv(i(k))0 are said
to be balanced.

We observe there exist d(m) − 1 balanced pairs in ev-
ery Eulerian circuit in Hv(i) . We think of the set of such

balanced pairs as the alphabet Σ for the Dyck language
L(Dd(m)−1). If v(i) is not the neutral vertex inVCR

n , for each
k where k|m with k ≥ 2, there is a one-to-one correspon-
dence between such k’s and j(k)’s with 1 ≤ j(k) ≤ d(m)−1
such that

{0v(i(k))λv(i(k))0, 1v(i(k))λv(i(k))1} = {α j(k), β j(k)}. (4)

If v(i) is the neutral vertex, i.e., ∃ k0 (k0 ≥ 2, k0|m), v(i) =

v(i(k0)) or v(i) = v(i(k0)), where i(k0) is as in Definition 3, we
have {0v(i(k0))λv(i(k0))1, 1v(i(k0))λv(i(k0))0} = {α j(k0), β j(k0)}. For
other k , k0, the correspondence is the same as in the case
that v(i) is not the neutral vertex, which is given by (4). In
either case, we obtain 2d(m)−1 one-to-one correspondences
between the set of the balanced pairs and Σ.

Let us consider all regular parentheses structures with
d(m) − 1 pairs of parentheses as in (1). Its total number
is given by 1

d(m)

(
2(d(m)−1)

d(m)−1

)
from Remark 1. In such a reg-

ular parentheses structure of length 2(d(m) − 1), we have
d(m) − 1 open brackets ( . We freely arrange d(m) − 1 neg-
ative symbols α1, · · · , αd(m)−1 in the position of d(m) − 1
open brackets. Its total number is given by (d(m) − 1)!.
To obtain a balanced Dyck word from the regular paren-
theses structure of length 2(d(m) − 1), if we choose such
an arrangement of d(m) − 1 negative symbols in the regu-
lar parentheses structure, the position of positive symbols
β1, · · · , βd(m)−1 is uniquely determined. Taking account of
the equivalence relation in the cycle, we eventually obtain

1
d(m)

(
2(d(m)−1)

d(m)−1

)
(d(m)−1)!
2(d(m)−1) 2d(m)−1 circular permutations of ele-

ments in the set of the balanced pairs in Definition 4 which
correspond to balanced Dyck word of length 2(d(m) − 1)
in L(Dd(m)−1). Such a circular permutation of elements in
the set of the balanced pairs in Definition 4 is said to have
a balanced parenthesis structure of length 2(d(m) − 1) with
d(m) − 1 types of pairs of parentheses. We will see the
Eulerian circuits which exhibit such circular permutations
in CR graphs only admit CR sequences. The existence of
such an Eulerian circuit in each CR graph is guaranteed by

Lemma 3 For each v(i) ∈ VCR
n , there exists an Eulerian

circuit in Hv(i) which exhibits a balanced parenthesis struc-
ture of length 2(d(m) − 1) with d(m) − 1 types of pairs of
parentheses.

Henceforth we may suppose that, once given a CR graph
Hv(i) , we obtain all Eulerian circuits in Hv(i) , each of which
exhibits the balanced parenthesis structure stated above. In
fact, we preliminarily select all such Eulerian circuits by
checking the balanced parenthesis structure in all Eulerian
circuits in Hv(i) . Let Y be such an Eulerian circuit in Hv(i) .
We identify the circuit Y as a sequence over {λ, 0, 1}, where
we define λ = λ.

Let us consider a periodic sequence generated by the se-
quence Y, which we use Y∞ to denote. We use Φ : Σ →
Φ(Σ) to denote one of the above-mentioned 2d(m)−1 one-
to-one correspondences for Y. The following observation
plays an important role in constructions of CR sequences.
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Remark 2 For each correspondence Φ(γ) = avλvb where
γ ∈ Σ, a, b ∈ {0, 1}, and v ∈ VCR, ν

n , we define Φ̂(γ) =
avλvb. Then we obtain rΦ(α j)wΦ(β j) = Φ̂(α j) rwΦ̂(β j)
for 1 ≤ j ≤ d(m) − 1, where w ∈ {0, 1, λ}∗.

i) If v(i) is not the neutral vertex in VCR
n , then Y∞ may be

written in the form of

v(i)0 fΦ(α j1 )gΦ(β j1 )h0v(i)λv(i)0 f · · · , (5)

where α j1 is the leftmost negative symbol in the cor-
responding balanced Dyck word, and v(i) appears ex-
actly twice in v(i)0 fΦ(α j1 )gΦ(β j1 )h0v(i). We have to con-
sider two cases, namely Φ(α j1 ) = 0v(i(k1))λv(i(k1))0 and
Φ(β j1 ) = 1v(i(k1))λv(i(k1))1, or Φ(α j1 ) = 1v(i(k1))λv(i(k1))1
and Φ(β j1 ) = 0v(i(k1))λv(i(k1))0. However, we consider
only the former case since the processes of constructing a
CR sequence from Y are exactly the same in both cases.
We transform v(i)0 f 0v(i(k1))λv(i(k1))0g1v(i(k1))λv(i(k1))10v(i)λ

in Y∞ into v(i)0 f 0v(i(k1))λ rv(i(k1))0g1v(i(k1)) λv(i(k1))1h0v(i)λ.

Noting that v(i(k1)) and v(i(k1)) are CR words, we obtain
v(i)0 f 0v(i(k1))λv(i(k1))0 rg1v(i(k1))λv(i(k1))1h0v(i)λ. After delet-
ing two λ’s, replace repetitions v(i(k1)) v(i(k1)) and v(i(k1))v(i(k1))

each by single words v(i(k1)) and v(i(k1)) respectively, then we
obtain v(i)0 f 0v(i(k1))0 rg1v(i(k1))1h0v(i), which we use Z(1) to
denote.

Next, depending on Φ(α j2 ) and Φ(β j2 ) appear in g or
h in (5), where α j2 is the second leftmost negative sym-
bol in the corresponding balanced Dyck word, Z(1) may be
written in the form of v(i)0 f (2)Φ̂(α j2 )g(2)Φ̂(β j2 )h(2)0v(i) or
v(i)0 f (2)Φ(α j2 )g(2)Φ(β j2 )h(2)0v(i) respectively.

On repeating the above transformations without
changing the balanced parenthesis structure, we in-
ductively obtain Z(d(m)−1). Noting again that v(i(k)) and
v(i(k)) are CR words, we obtain Z(d(m)−1) r Z(d(m)−1) =

v(i)0 f 0v(i(k1))0 · · · 0v(i) v(i)1 · · · 1v(i(k1))1r f 1v(i). Replacing
the repetition v(i)v(i) that occurs twice in a circular order
each by single word v(i) respectively, we obtain a CR
sequence X = v(i)0 f 0v(i(k1))0 · · · 0v(i)1 · · · 1v(i(k1))1r f 1 of
length 22m+1. It is easy to check that the obtained CR
sequence X is in the de Bruijn sequences of length 22m+1.
ii) We consider the case that v(i) is the neutral vertex,
i.e., v(i) = v(i(k0)) or v(i) = v(i(k0)). We have to consider
both cases. However, we only consider the case that
v(i) = v(i(k0)) since we have Hv(i) ≃ Hv(i) . Then, Y∞ may
be written in the form of Φ(α j1 ) fΦ(β j1 )gΦ(α j1 ) f · · · ,
where α j1 is the leftmost negative symbol in the cor-
responding balanced Dyck word, and v(k0)λv(k0) appear
exactly twice in Φ(α j1 ) fΦ(β j1 )g. We have to exam-
ine two cases, namely Φ(α j1 ) = 1v(i(k0))λv(i(k0))0 and
Φ(β j1 ) = 0v(i(k0))λv(i(k0))1, or Φ(α j1 ) = 0v(i(k0))λv(i(k0))1
and Φ(β j1 ) = 1v(i(k0))λv(i(k0))0. However, we only
consider the former case since the processes of con-
structing a CR sequence from Y are exactly the same in

both cases. Then, Y∞ may be written uniquely in the
form of v(i(k0))0 f 0v(i(k0))λv(i(k0))1g1v(i(k0))λv(i(k0))0 f · · · .
We transform v(i(k0))0 f 0v(i(k0))λv(i(k0))1g1v(i(k0))λ in

Y∞ into v(i(k0))0 f 0v(i(k0))λ rv(i(k0))1g1v(i(k0)) λ =

v(i(k0))0 f 0v(i(k0))λv(i(k0))0 rg0v(i(k0))λ. After deleting two
λ’s, replace the repetition v(i(k0)) v(i(k0)) by single words
v(i(k0)), then we obtain v(i(k0))0 f 0v(i(k0))0 rg0v(i(k0)), which we
use Z(1) to denote. By using exactly the same procedure
as in the case i) above, we inductively obtain Z(d(m)−1).
Modifying Z(d(m)−1) r Z(d(m)−1) similarly as in the case
i) above, we obtain a CR sequence X in the de Bruijn
sequences of length 22m+1.

Conversely, when we are given a CR sequence X in the
de Bruijn sequences of length 22m+1, in view of Lemma
3, we find in X or X a unique v(i) ∈ VCR

2m+1 that satisfies
the condition (3). Depending on whether v(i) is neutral or
not, if we reverse the above procedure for the case i) or ii),
we obtain an Eulerian circuit in Hv(i) from X or X. This
correspondence is two-to-one and onto. Since X ; X for
n ≥ 3 [6], corresponding to a CR sequence X, X gives a
distinct CR sequence. Hence the above procedures for v(i) ∈
VCR

2m+1 as a whole exhaust all pairs (X, X) of CR sequences
in the de Bruijn sequences of length 22m+1.

Eventually, we obtain the following.

Theorem 1 For the case that m (≥ 4) is a non-prime num-
ber, there exists at least 2m+1 CR sequences in the de Bruijn
sequences of length 22m+1.

Together with the previous result in [3], we have com-
pletely solved the fundamental problem posed by Fredrick-
sen in [1] on existence of CR sequences in the de Bruijn
sequences of length 22m+1 (m ≥ 1).
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