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Abstract—Volumetric modulated arc therapy (VMAT)

is a treatment method that irradiates X-rays to target tissues

within human body while continuously rotating a gantry.

Since the intensity of X-rays must be controlled through-

out the rotation, large changes of X-ray intensity are not

desirable. The problem of finding a VMAT plan can be for-

mulated as an inverse problem and solved with a dynamical

system. In this paper, to find VMAT plans, we proposed an

objective function with regularization related to the inten-

sity of X-rays and a dynamical system to minimize the ob-

jective function. Our experimental results showed that the

proposed system worked well for a toy problem on VMAT.

1. Introduction

Intensity modulated radiation therapy (IMRT) [1] is a

treatment method that irradiates X-rays to cancer cells

within human body. In IMRT, the gantry that radiates X-

rays repeats the operation of pausing at predetermined an-

gles and irradiating X-rays that are controlled with multi-

leaf collimator (MLC) to cancer sells. On the other hand,

volumetric modulated arc therapy (VMAT) [2] that is an

IMRT can reduce the treatment irradiation time because the

gantry irradiates X-rays while rotating. However, the shape

of the MLC needs to be quickly controlled while rotating.

The problem of planning IMRT can be formulated as an

inverse problem and solved with a dynamical system [3].

Although it is desired for the change of X-ray intensity dur-

ing the rotation in VMAT to be small from the viewpoint

of MLC control, its change is not considered in the formu-

lation of the inverse problem.

In this paper, to find VMAT plans, we propose an objec-

tive function with regularization related to the intensity of

X-rays, which corresponds to the total variation [4] of X-

ray intensity. We describe a dynamical system to minimize

the proposed objective function and experimental results

for a toy problem on VMAT.

2. Problem Description and Conventional System

Now,we are going to explain the problem of IMRT. In

computer tomographic images, we define the regions of
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planning target volumes (PTVs) as cancer sells and organs

at risk (OARs) as the healthy tissues. We set the lower and

upper limits of doses for each PTV and the upper limit of

doses for each OAR. While the doses for the other regions

are not defined. Intensity modulated X-rays are irradiated

so that prescribed doses at PTVs and OARs are satisfied.

According to the set-up, let us mathematically formulate

the problem of planning IMRT. Let w ∈ (0, γ)J as a vector

of unknown variables to satisfy X-ray intensity

D = Kw (1)

where γ is the upper limit of X-ray intensity, D ∈ RI
+

cor-

responds to prescribed dose at each voxel, K ∈ RI×J
+

is the

dose transfer matrix, I and J are the numbers of voxels

and X-ray paths, and R+ represents the non-negative real

numbers. If the number of voxels at PTVs and OARs is

I1 and I2, i.e., (I1 + I2 = I), respectively, then D con-

sists of DPTV ∈ R
I1

+ and DOAR ∈ R
I2

+ , and K consists of

KPTV ∈ R
I1×J
+ and KOAR ∈ R

I2×J
+ , we define

D =

(

DPTV

DOAR

)

and K =

(

KPTV

KOAR

)

. (2)

Let D0
PTV

and D1
PTV

correspond to the lower and upper

limits of doses for PTV, and D0
OAR

expresses the upper limit

of doses for OAR, (0 < D0
PTV
< D1

PTV
and D0

OAR
> 0). We

also define the projection P as

P : RI
+
→ RI

+
; D =

(

DPTV

DOAR

)

7→ P(D), (3)

where

(P(D))i1 =



















D1
PTV
, if (DPTV)i1 > D1

PTV

(DPTV)i1 , if D1
PTV
≥ (DPTV)i1 ≥ D0

PTV

D0
PTV
, otherwise

(4)

(P(D))I1+i2 =

{

(DOAR)i2 , if (DOAR)i2 ≤ D0
OAR

D0
OAR
, otherwise

(5)

for i1 = 1, 2, . . . , I1 and i2 = 1, 2, . . . , I2.

The IMRT planning problem can be formulated as a

problem to minimize an objective function defined as

F(w) =
1

2

∥

∥

∥Kw − P(Kw)
∥

∥

∥

2

2
(6)
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where ‖·‖p represents the p -norm. This can be replaced

into an initial-value problem of the ordinary differential

equation

dw

dt
= −W

(

U − γ−1W
)

K⊤
(

Kw − P(Kw)
)

(7)

where W = diag(w), the superscript ⊤ means transpose

of a matrix, U represents the identity matrix, and initial

values are set to (0, γ). Hence, by calculating the trajectory

of a solution to Eq. (7), we can find an IMRT plan that

corresponds to a local minimizer of Eq. (6) [3]. However,

in general, the method cannot find VMAT plans such that

the change of X-ray intensity during rotation is small.

3. Proposed System

To be able to find suitable plans for VMAT, we introduce

a regularization term into Eq.(6) as

H(w) =
1

2

∥

∥

∥Kw − P(Kw)
∥

∥

∥

2

2
+ ηT (w) (8)

where η > 0 is a parameter that determines the effect of

regularization; T (w) corresponds to the total variation of

the intensity of X-ray bundles at each angle and is defined

as below. We now assume that m and n correspond to the

number of X-ray paths at each angle. For all the X-ray

paths at the kth angle, we define the bundle of X-ray paths

as Wgk
= (w(k−1)m+1,w(k−1)m+2, . . . ,wkm)⊤, and then, we ob-

tain the distribution of the intensity of X-ray bundles as

WG =

(

‖Wg1
‖1, ‖Wg2

‖1, . . . , ‖Wgn
‖1

)⊤
. Therefore, the regu-

larization term in Eq. (8) is defined as

T (w) =

n−1
∑

k=1

∥

∥

∥ ‖Wgk+1
‖1 − ‖Wgk

‖1

∥

∥

∥

1
. (9)

To find a local minimizer of H(w) that corresponds

to a suitable treatment plan for VMAT, we propose a

continuous-time dynamical system as

dw

dt
= −W

(

U − γ−1W
)

{

K⊤
(

Kw − P(Kw)
)

+ η
∂T (w)

∂w

}

.

(10)

Here ,the gradient of total variation, ∂T (w)/∂w, is effi-

ciently calculated according to Kawamura’s method [4].

4. Experimental Results and Discussion

To check the performance of the proposed system, we

treated a toy problem using VMAT. It consists of a 3 × 3

pixel phantom image with two PTV and two OAR regions

shown in Fig. 1 and the prescribed doses for each region is

shown in Table1.

The conventional method using Eq. (7) with w j(0) =

0.01,∀ j, was applied to the toy problem. We calculated

the values of w(100) and obtained the dose volume his-

togram (DVH) and dose distribution map (DDM) as shown

Table 1: Prescribed doses
D0

PTV
D1

PTV
D0

OAR

PTV1 47.5 53.5 —

PTV2 57.0 64.2 —

OAR1 — — 20

OAR2 — — 25

Figure 1: PTVs and OARs in 3 × 3 pixel phantom image

in Fig. 2(a) and 3(a). Based on the DVH graph, the ab-

scissa expresses total irradiated dose and the ordinate repre-

sents the percentage volume corresponding to the irradiated

dose for each region. Sence, each line shows the histogram

of each region: PTV1, PTV2, OAR1, and OAR2. Based

on the DVH, we can see that the 100% of PTV1, OAR1,

and OAR2 regions were irradiated with 47.5 Gy, 20.0 Gy,

and around 25.0 Gy, of dose respectively; While 50% of

PTV2 region, 57.0 Gy of dose was applied and the irradi-

ated dose of the remaining volume was 64.0 Gy. There-

fore, all the irradiated doses satisfied the prescribed doses

in Table 1. Based on the DDM, the irradiated dose at each

voxel was displayed in correspondence with colors: gray,

orange, and yellow colors correspond to low, middle, and

high dose respectively. Note that the regions that are nei-

ther PTV nor OAR were shown in black color because the

lower and upper limits of irradiated dose were undefined

at the regions. Based on the DDM, the two PTVs were

applied with high dose and low dose was applied to the

two OARs. The DVH and DDM showed that the obtained

treatment plan is suitable for IMRT. However, it is not ap-

propriate as VMAT plans according to the results shown

in Fig. 4(a). In the figure, the abscissa expresses irradia-

tion angles and the ordinate represents the intensity of X-

ray bundles, i.e., the height of each bar corresponds to the

value of ‖Wgk
‖1, (k = 1, 2, . . . , 360). Hence, the intensity

of X-ray bundles drastically changed versus irradiation an-

gles, which means that multi-leaf collimators need to move

significantly, and besides, we need to control the movement

quickly and accurately.

We set the initial value w j(0) = 0.01 and applied the pro-

posed method using Eq. (10) with η = 0.1 to the toy prob-

lem. We obtained a DVH, DDM, and the intensity of X-ray

bundles versus irradiation angles are shown in Figs. 2(b),

3(b), and 4. The shape and position of each line in the DVH

and the colors in the DDM were almost the same as the

results obtained with the conventional method. The irradi-
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(a) Conventional method

(b) Proposed method

Figure 2: Dose volume histogram

(a) Conventional method (b) Proposed method

Figure 3: Dose distribution map

ated doses at PTV1, PTV2, and OAR1 were 47.5 Gy, 57.0

Gy, and 20.0 Gy respectively; 50% of OAR2 region was

irradiated with 20.4 Gy of dose and the remaining region

was irradiated with 25.0 Gy of dose. The results showed

that all the irradiated doses satisfied the prescribed doses in

Table 1. In addition, the change of X-ray intensity versus

irradiation angles in Fig. 4 was quite smaller compared to

the results of the conventional method. Based on the re-

sults, the proposed method was able to produce a suitable

treatment plan for VMAT.

(a) Conventional method

(b) Proposed method

Figure 4: Intensity of X-ray bundles versus irradiation an-

gle

5. Conclusion

In this paper, to produse suitable treatment plans for

VMAT, we proposed the objective function with the reg-

ularization related to the intensity of X-ray bundle and the

dynamical system to solve it. Our experimental results for

the toy problem showed that the proposed system worked

well and was able to produce a suitable treatment plan for

VMAT. Our future works are to analyze the local stability

of equilibrium points observed in Eq. (10) and to apply the

proposed method to VMAT problems consist of 512 × 512

CT images.

A. Gradient of total variation

As a simple example, we now consider a problem with

six X-ray beams

w = (w1,w2, . . . ,w6) (11)
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that are divided into three groups (directions) as

Wg1
= (w1,w2) (12)

Wg2
= (w3,w4) (13)

Wg3
= (w5,w6) (14)

and then we obtain the distribution of the intensity of X-ray

bundles

WG =

(

‖Wg1
‖1, ‖Wg2

‖1, ‖Wg3
‖1

)

. (15)

We note that these vectors are defined as row vectors to

simplify the following derivation.

To calculate the total variation T (w) in Eq.(9), we define

an operator

C =





















−1 1 0

0 −1 1

0 0 0





















(16)

and then we have

T (w) = S (WG)

= ‖C ·WG‖1

=

∥

∥

∥

∥

∥

∥

∥

∥





















−1 1 0

0 −1 1

0 0 0









































‖Wg1
‖1

‖Wg2
‖1

‖Wg3
‖1





















∥

∥

∥

∥

∥

∥

∥

∥

1

=

∥

∥

∥

∥

∥

∥

∥

∥





















‖Wg2
‖1 − ‖Wg1

‖1
‖Wg3
‖1 − ‖Wg2

‖1
0





















∥

∥

∥

∥

∥

∥

∥

∥

1

. (17)

Therefore, the gradient of T (w) can be calculated as

∂T (w)

∂w
=
∂S (WG)

∂w
=
∂S (WG)

∂WG

·
∂WG

∂w

=

(

∂S (WG)

∂‖Wg1
‖1

∂S (WG)

∂‖Wg2
‖1

∂S (WG)

∂‖Wg3
‖1

)

·



























































∂‖Wg1
‖1

∂w1

∂‖Wg1
‖1

∂w2

· · ·
∂‖Wg1

‖1

∂w6

∂‖Wg2
‖1

∂w1

∂‖Wg2
‖1

∂w2

· · ·
∂‖Wg2

‖1

∂w6

∂‖Wg3
‖1

∂w1

∂‖Wg3
‖1

∂w2

· · ·
∂‖Wg3

‖1

∂w6



























































. (18)

Here, the entries of the vector and matrix can be calculated

with subgradients

d|z|

dz
= sign(z) =



















1 z > 0

−1 z < 0

0 z = 0

(19)

as

∂S (WG)

∂WG

=



























− sign
(

‖Wg2
‖1 − ‖Wg1

‖1

)

sign
(

‖Wg2
‖1 − ‖Wg1

‖1

)

− sign
(

‖Wg3
‖1 − ‖Wg2

‖1

)

sign
(

‖Wg3
‖1 − ‖Wg2

‖1

)



























⊤

=

(

Sign (C ·WG)⊤ C
)⊤
. (20)

In Sign(y), a sign function is applied to each element of

vector y. Moreover, we obtain

∂WG

∂w
=



















































sign(w1) 0 0

sign(w2) 0 0

0 sign(w3) 0

0 sign(w4) 0

0 0 sign(w5)

0 0 sign(w6)



















































⊤

(21)

according to

∂‖Wgi
‖1

∂w j

=



















1 if w j > 0 and w j ∈Wgi

−1 if w j < 0 and w j ∈Wgi

0 otherwise

. (22)

Equation (21) is also represented as

∂WG

∂w
= (I3 ⊗ u2) ◦

(

w ⊗ u⊤3

)

(23)

where I3 is the identity matrix with 3 × 3 in which the

row size corresponds to the number of directions; un ex-

presses the row vector in which all the elements are one

and n means the number of elements; the symbols, ⊗ and

◦, correspond to the Kronecker product and the Hadamard

product. Therefore, from Eqs.(20) and (23), we finally ob-

tain the algebraic formulation of ∂T (w)/∂w as

∂T (w)

∂w
=
∂S (WG)

∂WG

·
∂WG

∂w

=

(

Sign (C ·WG)⊤ · C
)⊤
·
{

(I3 ⊗ u2) ◦
(

w ⊗ u⊤3

)}

.

(24)
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