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Abstract –Reservoir Computing (RC) is one 

of recurrent neural networks that can process 

temporal information. In RC, the weights of 

input and reservoir layers are fixed and only 

the weights of an output layer are learned; RC 

has been used to predict various time series 

and spatiotemporal patterns. Recently, a 

parallel RC with multiple reservoirs assigned 

to different spatial domains has been proposed 

to predict spatiotemporal chaos, such as in the 

Kuramoto-Sivashinsky model [1, 2]. In this 

study, we apply a multi-layer reservoir neural 

network to predict spatiotemporally chaos. 

This model consists of the layers of reservoirs 

connected in parallel and a reservoir with 

spatial averages as input. It’s performance is 

then compared to the parallel RC [1].  

 

1 Introduction 

 

Nonlinear dynamics appears in weather, 

economic, and audio data, and their prediction 

is a technique that contributes widely to our 

real lives. In recent years, there has been 

growing interest in reservoir computing as a 

machine learning model that can learn quickly. 

RC has self-feedback and has excellent 

properties for information processing that 

depends on past input. The greatest advantage  

of RC is that it requires less computation for 

training than other recurrent neural networks 

(RNNs). This allows for fast learning and can 

be handled well by standard computers.  

Parallel reservoir computing systems have 

been applied as models for predicting large-

scale spatiotemporal chaos with large degrees 

of freedom and spatially disordered structure 

in addition to temporal irregularities [1, 2]. In 

this study, we apply a multi-layer reservoir 

neural network to predict spatiotemporal 

chaos. We use it to predict the Lorenz-96 

model [3]. Then, we evaluate its performance, 

and compare its performance with a parallel 

RC [1].  

 

2 Model 

 

2.1  Reservoir computing (RC) 

 RC is one of RNN and has one hidden layer 

called reservoir. Figure 1 shows the architec-

ture of RC. The values of parameters for RC 

are listed in Table 1. Unless specified 

otherwise in this experiment, the parameter 

values in Table 1 are used. 

 Let 𝒖𝑡 ∈ ℝ𝑁  be the input vector at time t , 

𝒅𝑡 ∈ ℝ𝑁 be the target vector, and 𝐷𝑟 be the 

number of nodes in the reservoir. In the case 

of predicting a system consisting of 𝑁 

elements, in which 𝑿𝑡 ∈ ℝ𝑁 is the state of the 

system at time 𝑡 , we let 𝒖𝑡 = 𝑿𝑡 and 𝒅𝑡 =

𝑿𝑡+1.  

 The state of the reservoir  𝒓𝑡 is updated as  
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Eq. (1). 

 

𝒓𝑡+1 = (1 − 𝛿)𝒓𝑡 + 𝛿(tanh(𝑨𝒓𝑡  + 𝑾𝑖𝑛𝒖𝑡))  (1) 

 

Where 𝑾𝑖𝑛  is the 𝐷𝑟 × 𝑁  input matrix that 

maps the input vector to the reservoir space 

and A is the 𝐷𝑟 × 𝐷𝑟  adjacency matrix that 

determines the reservoir dynamics.The 

components of 𝑾𝑖𝑛  are sampled from a 

uniform distribution in [−𝛼, 𝛼]. The matrix A 

is the non-zero component with random 

values sampled from the uniform distribution 

with proportion 𝑑, and is normalized to have 

the maximum eigenvalue ρ. The output 

vector 𝒚𝑡 ∈ ℝ𝑵 can be obtained from the state 

of the reservoir as follows. 

𝒚𝑡 = 𝑾𝑜𝑢𝑡𝒓𝑡  (2) 

 

where  𝑾𝑜𝑢𝑡  is the 𝐷𝑟 × 𝑁  output matrix.  

The reservoir state series {𝒓0, 𝒓1, … , 𝒓𝑡}  is 

generated using Eq.(1) with the training data 

series {𝒖0, 𝒖1, … , 𝒖𝑡} . Using them, 𝑾𝑜𝑢𝑡 is 

devived with ridge regression. 

 

𝑾𝑜𝑢𝑡 = 𝑼𝒕𝑹𝑇(𝑹𝑹𝑇 + 𝛽𝑰)−1  (3) 

 

where I  is the unit matrix of 𝑫𝑟 × 𝑫𝑟 and 𝑹 

and 𝑼𝑡  are matrices whose t-th columns are 

the states 𝒓𝑡  of the reservoir and the target 

values 𝒅𝑡, respectively. 

 In forecasting, the output 𝒚𝑡 is given as the 

next input 𝒖𝑡+1 . Then, the forecast is made 

iteratively. 

 

Figure1. Reservoir computing architecture 

 

Table1. Parameter values of RC 

  

PARAMETER DESCRIPTION VALUE 

Dr reservoir  size 500 

δ leak rate 1.0 

α Input scale 1.0 

d adjacency matrix 

density 

0.05 

𝝆 adjacency matrix 

spectral radius 

0.95 

β ridge regression 

parameter 

0.0001 

g Number of 

reservoir 

8 

l Reservoir input 

overlaps 

2 

2.2 Parallel reservoir computing 

A parallel RC connects 𝑔 reservoirs in 

parallel as shown in Fig. 2, so that all of them 

contain 𝑞 = 𝑁/𝑔  number of elements. The 

following input is given to each reservoir.  

𝒉𝑡
𝑖 = (𝑥𝑡,(𝑖−1)×𝑞+1−𝑙, 𝑥𝑡,(𝑖−1)×𝑞+1−𝑙 , … , 𝑥𝑡,𝑖×𝑞+𝑙)

𝑇
   

                             (𝑖 = 1,2, … , 𝑔) , (4)       

Then, the output weight 𝑾𝑜𝑢𝑡
0 , 𝑾𝑜𝑢𝑡

1 , …, 

𝑾𝑜𝑢𝑡
𝑖 , … for each reserver is learned. From the 

learned weight, q outputs can be obtained for 

each reserver. 

 

     Figure2. Parallel reservoir computing 
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2.3  Multi-layer reservoir computing 

In a multi-layer RC, a new reservoir 𝒓𝐴  is 

connected to all the parallelized reservoirs as 

shown in Fig. 3. The reservoirs are given the 

following average 𝒌𝑡
0, 𝒌𝑡

1, … , 𝒌𝑡
𝑔

 for every q 

inputs. 

𝒌𝑡
𝑖 =

(𝑥𝑡,𝑖×𝑞 + 𝑥𝑡,𝑖×𝑞+1 + ⋯ + 𝑥𝑡,𝑖×𝑞+𝑞−1)

𝑞
        

                                                    (𝑖 = 1, 2, … , 𝑔)     (5) 

 

This allows prediction to be made using global 

as well as local input. 

 

Figure3. Multi-layer reservoir computing 

 

3 Experiment 

 

The prediction of changes the state of the 

Lorenz-96 (L96) model [3] was carried out 

using the parallel RC and the multi-layer RC 

The L96 model is expressed by Eq. (6).  

𝑥𝑖

𝑑𝑡
= (𝑥𝑖+1 − 𝑥𝑖−2)𝑥𝑖−1 − 𝑥𝑖 + 𝐹 

                                                     (𝑖 = 1, … , 𝑁)   (6) 

Where  𝑥−1 = 𝑥𝑁−1, 𝑥0 = 𝑥𝑁 and  𝑥𝑁+1 = 𝑥1. 

This model exhibits a chaotic behavior at 𝐹 =

8. 

The data were generated by calculating 

equation Eq. (6) with 𝐹 = 8  and a time 

increment Δt=0.005. A total of 4000 steps of 

the data was used for training. The following 

RMSE was used to evaluate the prediction 

accuracy. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑑𝑡

𝑖 − 𝑦𝑡
𝑖)2

𝑁

𝑖=1

      (7) 

The results of the prediction when 𝑁 = 64 

using the hierarchical reservoir are shown in 

Fig. 4. 

Experiments were conducted to evaluate the 

performance of the multi-layer RC with 𝑔 = 8 

and varying 𝑁, and with 𝑁 = 96 and varying 

𝑔. Then, we compared the performance of the 

multi-layer RC with that of the parallel RC in 

each case. The RMSE per time step was 

employed for performance evaluation, and the 

number of time steps until the RMSE exceeds 

1 was employed for performance comparison. 

 

  Figure4. (a)data (b)prediction by multi-

layer reservoir (c) forecast errors 

 

4 Result 

 

The performance evaluation of the multi-

layer RC and the performance comparison 

with the parallel RC when 𝑁 = 96 is fixed and 

𝑔  is varied are shown in Figs. 5 and 6, 

respectively. 

The Fig. 6 shows that the performance of 

multi-layer RC is better than the parallel 

RC as the number 𝑔 of reservoirs 

increases. 
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  Figure5. Performance of the multi-layer RC  

    (𝑁 = 96) 

 
Figure6. Comparison between the multi-layer 

RC and the parallel RC (𝑁 = 96) 

The performance evaluation of the multi-layer 

RC and the performance comparison with the 

parallel RC when 𝑔 = 8 is fixed and 𝑁 is 

varied are shown in Figs. 7 and 8, respectively. 

From Figs. 7 and 8, it can be seen that the 

performance of the multi-layer RC improves, 

especially when the input q for a single 

reservoir is small. 

 

Figure7. Performance of the multi-layer RC  

(𝑔 = 8) 

 

Figure8. Comparison between multi-layer RC 

and parallel RC (𝑔 = 8) 

 

5  Conclusion 

 

In this study, we designed the multi-layer 

RC and evaluated its prediction performance 

of spatiotemporal chaos in comparison with 

the parallel RC [1] using the L96 model. The 

results showed that the multi-layer RC has 

better prediction performance than the 

parallel RC. It was also found that the perfor-

mance of the multi-layer RC improves more 

when the number of inputs of the reservoirs 

conn-ected in parallel is smaller. 
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