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     Abstract- The Least Mean Square (LMS) and its 

variant the Normalized LMS (NLMS) adaptive 

algorithms are widely used in system identification, 

however they are better in identifying non sparse 

systems. Hence, in order to improve the performance of 

the LMS based system identification of sparse systems, 

an improved adaptive NLMS algorithm is proposed 

which utilizes the sparsity property of such systems. A 

sparse system is one whose impulse response consists 

of many near-zero coefficients. In this paper, a 

comparative analysis of the LMS, NLMS and the 

proposed improved NLMS algorithms, to identify an 

unknown sparse system, is presented. Simulation results 

demonstrates that the proposed improved NLMS 

algorithm provides significant performance gains in 

comparison to the conventional LMS and NLMS 

algorithms in both convergence rate and steady state 

behavior. 

 

Keywords- Adaptive filters, NLMS, System 
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1. Introduction 
     Adaptive filtering algorithms have been widely 

applied to solve many problems in digital 

communication systems such as acoustic echo 

cancellation, noise cancellation, channel estimation, and 

system identification [1, 2].   So far, the LMS and the 

NLMS adaptive algorithms have been the most 

commonly adopted approaches owing to the clarity of 

the mean-square-error cost function in terms of 

statistical concept and the simplicity for computation.  

     A sparse system is one whose impulse response 

consists of many near-zero coefficients and very few 

large coefficients There are many adaptive algorithms 

for system identification, such as Least Mean Squares 

(LMS) and Recursive Least Squares (RLS). However, 

these algorithms have no particular advantage in sparse 

system identification due to no use of sparse 

characteristic. In recent decades, some algorithms have 

exploited the sparse nature of a system to improve the 

identification performance. To our knowledge, the first 

of them is Adaptive Delay Filters (ADF), which locates 

and adapts each selected tap-weight according to its 

importance. Then, the concept of proportionate 

updating was originally introduced for echo 

cancellation application by Duttweiler. The underlying 

principle of Proportionate Normalized LMS (PNLMS) 

is to adapt each coefficient with an adaptation gain 

proportional to its own magnitude. Based on PNLMS, 

there exist many improved PNLMS algorithms, such as 

IPNLMS and IIPNLMS. Besides the above mentioned 

algorithms, there are various improved LMS algorithms 

on clustering sparse system. These algorithms locate 

and track non-zero coefficients by dynamically 

adjusting the length of the filter. The convergence 

behaviors of these algorithms depend on the span of 

clusters (the length from the first non-zero coefficient to 

the last one in an impulse response). When the span is 

long and close to the maximum length of the filter or 

the system has multiple clusters, these algorithms have 

no advantage compared to the traditional algorithms. 

     Motivated by Least Absolutely Shrinkage and 

Selection Operator (LASSO) and the recent research on 

Compressive Sensing (CS), a new LMS algorithm with 

   norm constraint is proposed in order to accelerate the 

sparse system identification. Specifically, by exerting 

the constraint to the standard LMS cost function, the 

solution will be sparse and the gradient descent 

recursion will accelerate the convergence of near-zero 

coefficients in the sparse system. Furthermore, using 

partial updating method, the additional computational 

complexity caused by    norm constraint is far reduced.  

 

     The paper is organised as follows. Section 2 

introduces the discrete time model of the digital 

communications system. Section 3 gives a brief 

summary of the NLMS adaptive algorithm. Section 4 

gives a brief summary of the proposed algorithm. In 

section 5 a computer simulation study is given to 

investigate the performance of the proposed algorithm 

and to compare it with the performance of the NLMS.  

Conclusions are given in Section 6. Finally, a list of 

references is given at the end of the paper. 

 

2. System Model 
     The discrete time model for the digital 

communication system considered here is shown in 

Fig.1. The desired response d(n), providing a frame of 

reference for the adaptive filter, is defined by: 

 

where u(n) is the input vector, which is common to both 

the unknown system and the adaptive filter and v(n) is 

)()()( 0 nvnuwnd
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   (1) 
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the AWGN with zero mean and variance 
2
. The error 

signal e(n), involved in the adaptive process, is defined 

by 

 

     e(n) = d(n) – y(n)                               (2) 

 

            = w0
H
(n) u(n) + v(n) -  w

^H
(n) u(n)              (3) 

 

where w^(n) is the tap-weight vector of the adaptive 

filter assumed to have a transversal structure. It is also 

assumed that the adaptive filter has the same number of 

taps as the unknown system represented by w0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 System identification model using  

              Linear transversal adaptive filter  

 

3. NLMS Algorithm 
   In a transversal adaptive filter, the input vector U(n) 

and the weight vector W(n) at the time of n
th

 iteration 

are defined as follows: 
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where un is the filter input and w^i, (i=0, 1, …, M-1) is 

the weight vector which corresponds to the filter length. 

The filter output is obtained as follows: 

     n

T

nn UWy
^

                               (6)                          

 

In the Least Mean Square (LMS) algorithm, the weight 

vector Wn is updated using the following equation:  

 

     nnnn UeWW 1                                            (7) 

In (7)   is a positive constant, which represents the step 

size parameter in the LMS algorithm. By repeating the 

updating, the MSE: E[en
2
] is minimized, where E[

.
] 

denotes expectation. To ensure the stability of the 

adaptive process and the convergence of the MSE, the 

step size,, should satisfy the following condition: 
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2
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                                           (8)            

On the other hand the NLMS algorithm adapts the tap 

weight vector [3] using a gradient descent algorithm 

that reduces the squared estimation error at each time 

instant. The algorithm is given below:        
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               (9)      

where  is the algorithm’s step-size parameter   is a 

very small number added to avoid instability, and en is 

the error signal which is defined as: 

        
^

n

T

nnn WUde                                           (10)  

 

4. The Proposed Algorithm 
     The results of Improved NLMS Algorithm are 

presented for the BPSK signal. The unknown system is 

represented by a 100 tap FIR filter, whose taps are 

randomly generated. The proposed improved NLMS 

algorithm is obtained by minimizing the following cost 

function:  

 

               
 

 
                                         (11) 

 

Where         denotes the    norm that signifies the 

number of non-zero entries, and   is a parameter 

adopted to adjust the influence of the    norm cost. 

 

            
  

          
                                                    (12) 

 

The recursion equation for the proposed algorithm is 

based on the principle of Newton method or Newton 

algorithm where you can find successively proper 

approximations to the function. The recursion equation 

is shown as follows: 

 

                                                (13) 

 

Where    represents the gradient of the error with 

respect to the tap weights (coefficients) and     is the 

second gradient or the “Hessian” of the error function. 

 

         
      

                                                              (14) 

 

                      

                                           
 

            
      

                                                             (15) 

 

More accurately, the second gradient can be shown as 

follows, which corresponds to a matrix: 

 

         
      

   
    

                                                      (16) 

And the parameter   is a positive value that is used to 

determine the region of zero attraction In addition,  the 

filter coefficients are updated along the negative 

gradient direction.  

e(n) 

d(n) 

 

w0(n) 

     

      w
^
(n) 

u(n) 

v(n) 

y(n) 
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     Zero attraction imposes an attraction to zero on small 

coefficients. The function of zero attractor leads to the 

performance improvement of Ɩ0-LMS in sparse system 

identification. To be specific, in the process of 

adaptation, a tap coefficient closer to zero indicates a 

higher possibility of being zero itself in the impulse 

response, when a coefficient is within a neighborhood 

of zero (−1/ ,1/ ), the closer it is to zero, the greater the 

attraction intensity is. When a coefficient is out of the 

range, no additional attraction is exerted. Thus, the 

convergence rate of those near-zero coefficients will be 

raised. In conclusion, the acceleration of convergence of 

near-zero coefficients will improve the performance of 

sparse system identification since those coefficients are 

in the majority. A large   means strong intensity but 

narrow attraction range. Therefore, it is difficult to 

evaluate the impact of   on the convergence rate. For 

practical purposes, Bradley and Mangasarian suggested 

to set the value of   to some finite value like 5 or 

increased slowly throughout the iteration process for 

better approximation. 

 

5. Simulation Results 

This section presents the computer simulations results 

of the performance of the proposed improved NLMS 

algorithm in spares systems in comparison with the 

standard LMS and NLMS algorithms. The behavior of 

the error estimation will be shown in the figures below 

with the comparison of four algorithms, LMS, NLMS, 

Modified NLMS, and Improved NLMS.  Moreover, to 

obtain the best minimum square error, different values 

of   were analyzed. The next figures show how using 

large and small values of   can affect the behavior of 

the MSE along the curve. For a large value of    the 

behavior of the MSE is shown in the figure below: 

 

. 

 

Figure 2: MSE performances comparison between four 

algorithms where   = 0.005(large value) 

 

     According to the figure 2 above, it can be clearly 

seen that the value of the proposed improved NLMS 

algorithm takes another turn in providing inaccurate 

error estimation and this value convey the least 

performance compared with other methods.  

In figure 3, it can be clearly seen that the value of the 

proposed algorithm takes another turn in providing 

inaccurate error estimation and this value convey 

undesired performance, similar to the performance of 

the standard  LMS and NLMS  algorithms.  

     Now, in order to get to the best value of  , we tried 

different values and then average these values to get the 

one that provides minimum square error.  

 

     Figure 4 shows how we have obtained the average 

value of   between the various trial values. Finally in 

Figure 5, the performance of the proposed improved 

NLMS algorithm shows a 10 dB outstanding 

performance improvement in comparison with the 

NLMS.  

 

 

Figure 3 Comparison between the four algorithms  

where   =  0.000003 

 

Figure 4: MSE performances of different values of   
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Figure 5:  Best value obtained to provide the best error 

estimation;   =  0.00005 

 

6. Conclusions 

     In this paper, in order to reach to a better 

approximation, the parameter of   was analyzed and 

many trial and error steps were done in order to reach to 

a better value to obtain the best error estimation. The 

error estimation for the proposed improved algorithm 

was then compared with three various LMS algorithms 

in order to notice its behavior and successfully it gave a 

better approximation of the error estimation.  

 

     The performance of the proposed improved NLMS 

algorithm shows a 10 dB outstanding performance 

improvement in comparison with the LMS and NLMS 

algorithms.  
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