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Abstract—The mammalian cochlea is a sophisticated
hearing sensor that uses active amplification to enhance
weak sounds. The nonlinearity necessary for this task al-
lows a remarkable dynamic range, yet at the same time it
removes the superposition principle, resulting in complex
interactions of the incoming frequencies and the genera-
tion of new frequencies (combination tones). Using a bio-
physically realistic mesoscopic model of the cochlea, we
show that the processing of sound mixtures produces ac-
tivity profiles consistent with power-laws. Importantly, if
the cochlea is parameter-tuned in a way that was earlier
shown to effectively model the process of active listening,
the power-law distribution is broken.

1. Introduction

Originally borrowed from the study of phase transitions
in physics, the notion of criticality has become increas-
ingly popular in the biological and neural sciences. The
idea is that a critical state, usually characterized in terms
of power-law behavior of some relevant associated observ-
ables, would allow the system to be most flexible to per-
form a multitude of tasks (see e.g. [1]). While evidence
for the criticality of certain brain structures has been pro-
vided in terms of power-law distributed observables (e.g.
[2]), it is by no means clear that these observables are di-
rectly relevant to the performance of an active task. Using
the well-tested and (on a mesoscopic level) biophysically
optimal model of the mammalian inner ear (the so-called
‘Hopf cochlea’ [3, 4]), we show that power-law relation-
ships in the relevant observables naturally arise, but during
active listening are broken.

2. Cochlea activation and generation of power-laws

In the cochlea, an incoming sound of frequencyf (a
‘pure tone’) propagates towards a resonant place on the
basilar membrane, where it is amplified and shortly after
dissipated. The active amplification was shown to be well-
modeled by a stimulated Hopf process

ż= (µ + i)ωchz− ωch|z|
2z− ωchF(t), z ∈ C, (1)

wherez(t) denotes the complex response amplitude,F(t)
is the complex forcing signal,ωch is the characteristic fre-

quency of the Hopf amplifier andµ is the bifurcation pa-
rameter [3, 5, 6, 7]. Forµ < 0, the system itself is stable
and, upon forcing, acts as a small-signal amplifier, while
for µ > 0, stable limit-cycle solutions appear. For the
dissipation process (a passive property of the cochlea), a
tailored low-pass filter has been shown to model well the
effects of the major dissipation processes at work (essen-
tially the viscous losses in the cochlear fluid) [3, 8, 9].
A feed-forward chain of cochlea sections where each sec-
tion comprises a Hopf amplifier and a low-pass filtering
part then forms the Hopf cochlea, a hardware and soft-
ware device that reproduces all the salient biological mea-
surements of cochlear mechanics [4, 10, 11]. In the Hopf
cochlea, the characteristic frequencies of the Hopf ampli-
fiers form a geometric sequence, so that each octave in the
frequency range is covered by the same number of Hopf
cochlea sections. This yields a logarithmic ‘tonotopic map’
that is comparable to mammalian cochleae (the flexibil-
ity in the choice of frequency range and the number of
sections allows a detailed comparison to any mammalian
model cochlea, e.g. cat, guinea pig or human). For all ex-
periments described below, we used a software cochlea of
29 sections covering 7 octaves (characteristic frequencies
fch between 14.08 and 0.11 kHz).
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Figure 1: Complex cochlear excitation (relevant sections
3-22 are shown) for stimulation with two harmonic sounds
( f (1,2)

0 = 3.5, 9 kHz and two overtones each) at -60 dB
rms-level/sound.

While the cochlear excitation pattern is simple for pure
tones, the picture becomes much more complex in the
case of incoming sound mixtures of different frequencies
f1, f2, ... Here, the nonlinearity of the active process leads
to the generation of new frequencies, so-called combina-
tion tones, the presence of which was already known to
18th century musicians Georg Sorge and Giuseppe Tartini.
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For a two-tone input of frequenciesf1, f2, the (predomi-
nantly cubic) nonlinearity in the cochlea generates combi-
nation tones 2f1 − f2, 3f1 − 2 f2,... which then propagate
towards their respective place of amplification. These cu-
bic combination-tones are well-audible also for non-trained
listeners, and have been shown to have a key effect on pitch
perception [12, 13]. For a more complex, but still entirely
natural input such as a mixture of different harmonic com-
plexes f (1)

0 ,2 f (1)
0 ,3 f (1)

0 , ...; f (2)
0 ,2 f (2)

0 ,3 f (2)
0 , ...; .., a plethora

of combination tones of various strengths emerges. The
generation and subsequent amplification of these combina-
tion tones then lead to a complex cochlear excitation pro-
file, cf. Fig. 1, where the cochlear excitation is sketched
in terms of the output strength measured at each section.
Here, we used an input mixture of two harmonic sounds,
where a harmonic sound is assumed to be of the form
∝
∑n

k 1/k e2πik f0∗t, i.e. with fundamentalf0 and (n−1) over-
tones of relative amplitude 1/k.
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Figure 2: Cochlea section responses (µ = −0.2). Output
profiles for a) single pure-tone stimulation (-70 dB) and
b), stimulation with two complex tones of fundamental fre-
quenciesf (1,2)

0 (-60 dB rms per complex tone).

Given the complex nonlinear nature of cochlear excita-
tion, one may now ask in what statistical activity distri-
bution along the cochlea these interactions result. To ad-
dress this question, we stimulated the Hopf cochlea with
two-sound mixtures of random fundamental frequencies
and fixed input levels. Motivated by comparisons to psy-
choacoustic experiments, we define a hearing threshold of
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Figure 3: Power-laws in the cochlea. a) Section activ-
ity (N = 10000 trials) for different levels of flat tuning
and two complex tones of random fundamental frequen-
cies as input, for fixed sound levels (-60 dB). b) Distri-
bution of the maximal strengthA of tones present in the
cochlea (stimulus and CT) upon two-sound stimulation
( f (1,2)

0 = 1331, 2120 Hz). Plotted is the survival function
S F(A) = 1− P(A), whereP(A) is the cumulative probabil-
ity distribution. Black line: Best power-law fit (exponent
from maximum likelihood estimation).

-50 dB to denote the output strength (at a cochlea section)
where the perception of a sound is just possible [12, 13].
While such a value gives the best fit to the audibility
threshold of combination tones, we checked that a differ-
ent choice (e.g. -40 or -60 dB) does not essentially change
any of the following results. The fundamental frequen-
cies are chosen randomly from a uniform distribution on
the interval (0,15) kHz. Fig. 2a) shows the responses of
three cochlea sections to simple pure-tone stimulation of
different frequencies. The activity of the section, which
we defined as the proportion of cases where the response
at the section is above the implemented hearing threshold,
is roughly constant on a logarithmic frequency scale, i.e.
∝ fch, where fch is the characteristic frequency of the sec-
tion. The more complex case of two harmonic sounds as
input is depicted in Fig. 2b). Here, the interactions in the
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cochlea give rise to highly non-trivial ‘receptive fields’ of
the sections, where the contributions of the combination
tones are easily identified as the non-vertical/horizontal
structures. Contrary to the common perception that combi-
nation tones are just a simple by-product that can be safely
ignored, they seem to account for the major part of cochlear
excitation. Fig. 3a) shows the corresponding activity pro-
files over all cochlea sections on classic log-log-scale for
different levels ofµ-settings, for two-sound-mixtures and
−60 dB input level (rms) per sound. Here, the activity is not
proportional tof anymore, but surprisingly the power-law
behavior continues to hold, however now with nontrivial
exponents∝ f β, 0 < β < 1.

To obtain a second measure to characterize the state of
the cochlea, we focused on the case of a two-sound in-
put with fixed (but arbitrary) frequencies and examined the
generated combination tone responses in detail. Here, the
generality of the relation of the two fundamentals (not a
simple p:q ratio, where p and q are small integers) yields
a multitude of combination tones, and renders the iden-
tification of the relationships between these combination
tones difficult. To circumvent this difficulty, we consider
the distribution of the frequencies occurring in the cochlea
(both the stimulus frequencies and the combination tones)
in terms of the maximal strength (amplitude) they reach.
This is achieved by tracking the tones (frequencies) in the
Fourier transform through the cochlea sections and record-
ing each tone’s maximal value. Fig. 3b) shows the results
for a stimulation with fundamental frequenciesf (1,2)

0 =

1331, 2120 Hz, five harmonics and -70 dB rms-level for
each sound. The survival functionS F (complementary cu-
mulative distribution) is very well-fit by a power-law of ex-
ponentβ = 1.13. For similar experiments with different
input sound levels and frequencies, the obtainedβ-values
are all between 1.1 and 1.2.

3. Loss of power-laws

In humans and other mammals, neural feedback loops
from cortical and sub-cortical brain areas provide input to
more peripheral components of the auditory system. As
one part of this feedback system, neurons from the brain-
stem (so-called medial olivocochlear efferents) synapse on
the cochlea’s outer hair cells (the structures that are respon-
sible for the active amplification in the ear). While the
role of these efferent connections is still not fully under-
stood, there is strong evidence that they play an important
part in the process of active listening (selective attention)
[14, 15, 16, 17]. We have recently investigated to what ex-
tent the peripheral hearing system can assist a listener in fo-
cusing on an auditory signal [18]. Using pitch as a guiding
feature (cf. [19, 20, 21] for pitch, pitch perception models
and relevant physiological data), we developed a specific
measure of the tuning error that, for a mixture of two com-
peting sounds, estimates how much the cochlear output is
biased towards the signal component of interest. Working
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Figure 4: Loss of power-laws. a) Hopf-cochlea tuning
scheme (left) and biological tuning scheme (right) [18].
b) Activity profiles when sections 19-21 of the cochlea
(CF= 622,523,440 Hz) are tuned away fromµ = −0.2
to valuesµ = −0.3,−0.5,−1,−2.

with real-world sound examples and an evolutionary strat-
egy in the tuning unit, the approach demonstrated not only
that the activity of the biological efferent connections can
be well-modeled by the tuning of the bifurcation parame-
ters (theµ-parameters) in the Hopf cochlea, but also that
these efferent connections provide a very effective way to
control the complex interactions in the cochlea and to tune
the cochlea towards a signal component of interest. Fig.
4a) provides an overview of the cochlea tuning scheme and
a comparison to the biological example (cf. [18] for de-
tails).

Figure 4b) shows the influence of a hypothetical listen-
ing process on the cochlear activation curves. For this, the
µ-parameter of sections 19-21 of the cochlea (characteris-
tic frequencies between 400 and 600 Hz) are shifted from
µ = −0.2 to more negative values, which models the sup-
pression of an unwanted sound of a frequency around 500
Hz. In addition to the obvious loss of power-law behav-
ior of the cochlear activation curves, a corresponding ef-
fect is also observed in the distribution of combination tone
strengths. Generally, tuning leads to an effective suppres-
sion of disturbing combination tones [13], and in the opti-
mal case, to a complete collapse of the distribution of CT
strengths.

4. Discussion

The processing of sounds in the mammalian inner ear
is an impressively complex and still not fully understood
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process. In many scientific investigations and technical
applications (e.g. hearing aids or cochlear implants), the
ubiquity and significance of combination tones is not yet
adequately taken into account. Considering the fact that
these combination tones propagate along the auditory path-
way without apparent loss of quality or strength (cf. [22]
for recent measurements in the gerbil inferior colliculus), a
proper analysis of interactions in the cochlea is of utmost
importance.

Using the Hopf cochlea as our model, we have demon-
strated that despite the complexity of combination tone
generation in the cochlea, simple power-law relationships
hold for the statistical activation of the cochlea sections.
Implementing a task of active listening, which is achieved
by tuning some cochlea sections away from the bifurca-
tion point, however breaks these power-laws. This suggests
that observables relevant for our organism (such as the to-
tal statistical activation of a cochlea section) may indeedbe
power-law distributed, but that this only holds for a state of
passive perception.
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