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Abstract—Systems depending on two or more param-

eters are investigated for the existence of some emergent

properties. As an example, we may ask whether they show

a particular periodicity in their dynamics. Traditionally, it

is assumed that this happens on a direct product of the in-

tervals where this property is displayed when looking at

one parameter alone. This, however, is wrong for real-

world systems, the origin of the phenomenon being based

in the latter’s nonlinearities. We demonstrate that the emer-

gence of joint properties is generically confined on shrimp-

shaped domains in the combined parameter space. This en-

trains difficulties for clustering approaches that are gener-

ally based on the Gaussian cartesian product point of view.

1. Introduction

Biological organisms are able to fabricate intricate ma-

chineries from the molecular scale up to the macroscopic

scale, without the obvious need to store and to explicitly

handle the corresponding information. Synthetic biology,

molecular programming, and nucleic acid nanotechnol-

ogy have thus become an experimental playground for the

search for systems that carry out human-defined molecular

programs, to input, output, and manipulate molecular struc-

tures. For chemistry to become the next information tech-

nology substrate, improved tools for designing, simulating,

and analyzing complex molecular circuits and systems are

necessary. On the DNA nanotechnology model system,

corresponding knowledge is presently quickly growing and

the area of alternative computing paradigms starting to take

shape. From a physics point of view, biological and physi-

cal processes start to converge, so that to describe biochem-

ical computation, concepts from physics can be borrowed

and applied.

Most real-world systems exhibit a nontrivial behavior of

some observables in time. Many such processes exhibit

periodicity (the circadian rhythm, the cell cycle, reproduc-

tion), which therefore has often been regarded as a key ex-

pression of the essential mechanisms of life. Conversely,

irregular behavior is often related to abnormal stimuli, or

to a defect or disorder of the generating mechanism. Mod-

ern methods of measurements and modeling have now pro-

vided techniques that permit the observation of dynamical

aspects of processes, which in the past, due to a lack of

such technology, were described as steady-state. Genetic

expression processes are an example thereof [1]. Recently,

it has been possible to measure down to single cell expres-

sion, which revealed different kinds of rhythmic to irreg-

ular expression patterns [2, 3]. In our study, we will put

forward a generic model that demonstrates that regular and

‘stochastic’ expression may result from the same nonlin-

ear system and that the transition among these states may

require small parameter changes only.

2. Emergence of Shrimps in Parameter Space

How is this multitude of scaled versions of the same

shrimp template generated? In the case of smooth systems,

shrimps are the result of the interaction of two or more

largely independent parameters in creating points with a

full set of zero partial derivatives. From this observation,

the shrimps phenomenon can be explained in a simple way,

for flows (the Rössler system [4]) and for maps (the dissi-

pative Hénon map [5] in [6]). For simplicity of argument

we will consider the discrete formulation and follow the

exposition given in [7]. Note that the dissipative Hénon

map is the paradigmatic two-dimensional discrete map ac-

counting for the universality properties of dissipative non-

linear systems. The Hénon map can be written in its stan-

dard form as fh : {x, y} → {c − dy − x2, x}. After cy-

cling through the coordinates by means of two iterations,

the two-dimensional system can be condensed into the ap-

proximative one-dimensional map

f : x → b − (a − x2)2,

which incorporates the two parameters a, b for the offset

and the leading term nonlinearity in one equation.

Stable k-periodic islands arise whenever

xk = f k(xk), | mk |=| f k
′

(xk) |< 1 (1)

holds, where f k denotes the k-fold iterated map f and the

prime
′

denotes the derivative with respect to x. A super-

stable locus requires that mk = 0. More explicitly, we have

f k
′

(xk) =

k∏

i=1

4xi

k∏

i=1

(a − x2
i ). (2)

This implies that all k-superstable solutions need to pass

either through xk = 0 or xk = ±
√

a. For the case xk = 0,
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Figure 1: Basic shrimps structure: Two intersecting

parabolas of superstability (full lines), extending until the

derivative of the solutions exceeds 1 in absolute value (non-

generically located dashed lines), where tangent or period-

doubling bifurcations occur. In addition, where lines cross,

we generally deal with non-ergodicity. Secondary, non-

generic, system properties can complicate this fundamental

structure.

for k = 1 we obtain from b − (a − x2)2 = x the relation

a = ±
√

b. For the case xk = ±
√

a, we obtain b = ±
√

a. By

differentiability of f in the parameters a, b, this defines two

parabolas in parameter space, which define the four legs of

the main k = 1-shrimp, see Fig. 1. From this equation, the

above-identified two parabolas

a = ±
√

b, b = ±
√

a (3)

emerge. By representing Feigenbaum universality in

higher-dimensional parameter space, the emergence of

shrimp-like structures is thus a universal nonlinear phe-

nomenon, i.e. it must be expected to occur in any nonlinear

dynamical system. The placement of the copies is, how-

ever, determined by the specific system’s properties.

3. Biological Manifestations of Shrimps

To what extent such structures emerge in biological sys-

tems has mostly remained unexplored. This is a nontrivial

question since there, vast areas in parameter space may not

be occupied by typical real-world biological systems and

processes. Here we focus on two domains where the depen-

dence of the dynamics on system parameters is of special

interest.

The first domain of examples that we consider are

cDNA microarrays measurements, from three specific tis-

sues (liver, kidney, testis) from six exchangeable mice.

Therefore, the gene-specific attribute is the collection of

tissue-specific expected expression values (which are rel-

ative to a common reference mRNA pool derived from

equal parts of all mRNA samples (µliver , µkidney, µtestis)) [8].

Clearly, a plot of the three expression strengths reveals the

presence of a shrimps-shaped data structure Fig.2.

Figure 2: 3-D scatterplots of mouse genome attributes. The

point cloud is concentrated around the origin, which corre-

sponds to genes with roughly equal expression in all three

tissues. Shrimps arms radiate out. From [8].

The second domain of examples we focus on are Gold-

beter biochemical reactions [9], for which corresponding

experimental evidence is available [10]. Enzymatic reac-

tions described by the reaction are known to exhibit, at

certain parameter values, periodic oscillations. Although

rhythmic behavior is not exclusive to enzymic reactions,

but rather at all levels of biological organization, enzymic

periodicities are the best described at the molecular level.

On this level, the system is represented by a two-step en-

zymic reaction process: Substrate S is injected at constant

rate v and runs through enzymic reactions comprising two

positive feedback loops coupled in series. S is transformed

by catalyzation by an enzyme E1, which is activated by its

product P1. A second enzyme E2 uses P1 as substrate and

is activated by its product P2. ks is the first-order rate con-

stant for the removal of P2. The metabolite concentrations

can be described by three ordinary differential equations,

cf. [9], containing, among others, parameters ks, v, σ1, σ2.

Whereas Decroly and Goldbeter performed their analy-

sis upon changing parameters ks and v, we have investi-

gated the behavior by changing σ1 and σ2 as shown in Fig.

3. Clearly, we find shrimp-like structures with stable pe-

riodic oscillations, starting from period 4 (dark gray) to 8

(green) to 16 (yellow) to 32 (ocher). Regions of chaotic

behavior are in white. Thus, motivated by our results from
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Figure 3: Shrimps in the biochemical system described in

[9] (parameter space σ1 = 9.29 − 9.60 and σ2 = 9.84 −
9.98). Ref. [9] used σ1 = σ2 = 10.

electronic systems, we also find large shrimp-shaped do-

mains in biological systems and microbiological reactions.

The self-similarity of the shrimp areas may simplify the

tuning of jumps from one to another periodic behavior, en-

abling in this way simple state-coding in terms of periodic

signaling.

4. Feature Maps

To relate these observations to bioinformatics, it is im-

portant to note that shrimps are of course not restricted to

two-dimensional parameter space, they also exist in higher

dimensions. Moreover, in many applications, objects may

not be directly characterized by their fundamental param-

eters (these are often unknown), but by easily observable

features. From parameter coordinates, we arrive at the

feature space by means of a feature-mapping, that most

of the time is implicit. In a not too high-dimensional

feature space, feature-maps of sufficient smoothness will

closely reflect the situation that we have in parameter space

(though a formalization of this expectation may require an

advanced mathematical framework). A pictorial example is

provided by the transformation (a, b)→ (a, Log(1+ |b|), ab)

from two- into three-dimensional space (Fig. 4).

5. Clustering and Parameter Estimate Consequences

Suppose that we now sample the parameter or feature

space with the aim of identifying parameters that lead to

a periodic system response. Whatever the sampling pro-

cedure and the test for periodicity, what will likely re-

sult is a situation where candidate systems will be from

f

Figure 4: Artificial feature-map example: A two-

dimensional shrimp is mapped into a three-dimensional

feature space shrimp by means of the transformation f :

(a, b) → (a, Log(1 + |b|), ab). Shrimp essentials are pre-

served under map f ; transformations of similar mathemat-

ical properties yield comparable results. (Left-hand side:

Black area: Parameters with the same periodicity; blue

area: parameters with period-doubled periodicity. Right-

hand side: Corresponding features.)

primary shrimps or from lesser populated areas hosting

smaller shrimps, or systems for which the data appears pe-

riodic, but is actually chaotic (unstable periodic orbits are

generically embedded into chaos, and the systems’ trajec-

tories can follow such orbits for quite some time). Taking

this situation as a toy example, we now proceed towards

the clustering of the data into sets of similar behavior. To

this end, we suppose that similar parameters generate more

similar behaviors than dissimilar ones. The principle that

clustering is thus based on, is the smaller the distance in

space (parameter-, feature-) is, the more they are coupled

and likely to be in the same cluster. The interesting ob-

servation then is that even in this case, the most promi-

nent clustering algorithms fail in the clustering of convex-

concave bounded sets such as our shrimp-like domains,

since they are implicitly based on a linear separability cri-

terion. While this is evident for the popular k-means algo-

rithm, this also holds for hierarchical, agglomerative Wards

clustering.

In a Bayesian context, standard parameter inference

methods such as the standard Metropolis algorithm could

be expected to fail as well in this context. To check these

expectations, we performed a survey of applications of

ABC methods on our parameter space, where [11] served

as the references of models and methods. Our numerical

experiments demonstrate that even in the context of the

strongly fractionalized parameter spaces of nonlinear sys-

tems, the ABC approaches perform well. This is mainly

due to the fact that they are ensemble-based. Given some

observed data x and a proposed model with parameters θ,

the aim of parameter inference is to find those parameter

- 654 -



values that give the “best fit” to the observation. To find the

parameter values providing the best fit, a common choice is

algorithms from the family of genetic algorithms or evolu-

tionary strategies, that minimize the risk of getting stuck in

local maxima/minima. We check here the performance of

typical parameter inference methods when applied to the

simplest shrimp-exhibiting system. The ABC sequential

Monte Carlo ‘ABC-SMC’ method from [11] is used to in-

fer the parameters a, b of the one-dimensional form of the

Hénon map. We focus on the case a = 1.1 and b = 0.3,

which is located on a shrimp of stable period-2 behavior,

but closely towards its border. Following [11], starting

from the initial position x0 = −0.2, we generated a time

series of the orbit, to which we added Gaussian noise of

mean µ and variance σ2, to obtain the reference data xr .

As the error function, we chose the sum of squared errors

d(x, xr) =
∑

i(x [i]− xr [i])2. The prior was a uniform distri-

bution on a ∈ (0.3, 1.3) and b ∈ (0.1, 1.0), sampled by in-

variable N = 1000 systems or‘particles’. ABC-SMC finds

the correct region in parameter space within relatively little

computational time. The particular shape of the shrimps

poses no problem, see Fig. 5c).
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1.1, b = 0.3 (100 initial iterations discarded). b) Noise-

corrupted data (20 points of a) plus Gaussian noise (µ =

0, σ = 0.2)). c) ABC-SMC particles (red) and period-2

shrimps (blue) in parameter space, for different tolerances

ǫ. Black cross: target values.
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