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Abstract—
Depending on a Poincaré section, a period-doubling bi-

furcation of a 2-torus attractor in flow is observed as dif-
ferent two types bifurcations of ICCs on a Poincaré sec-
tions. We demonstrate this fact in the third-order Duffing
equation with periodic external force system [1]. We clar-
ify that this bifurcation by using Lyapunov exponents and
Lyapunov bundles. The Lyapunov bundle is a set of gener-
alized eigenvectors of a periodic solution to a each point of
quasi-periodic solution.

1. Introduction

Bifurcation of 2-torus in flow is a very popular research
theme in recent years. A 2-torus is one kind of quasi-
periodic solutions in continuous dynamical systems (flow),
in which two incommensurate frequencies exist. In gen-
eral, to analyze bifurcation of flows, we take a Poincaré
section, then the flow system can be converted to a map
system. If a solution is a 2-torus in flow, it is observed as a
closed curve (1-torus) on Poincaré section which is called
Invariant Closed Curve (ICC). Depending on a Poincaré
section of a flow, one can observe 2 types of curve dou-
bling bifurcation of an ICC. At the type I, an ICC with one
loop bifurcates to an ICC with two loops. At the type II,
an ICC with one loop bifurcates to two ICCs. Due to Ash-
win [2], these bifurcations are the same bifurcation in the
original flow. Hence, we conjecture that there is only one
doubling bifurcation in flow, and we named this bifurcation
Double Covering (DC) bifurcatoin. In this study, we clarify
DC bifurcation of a 2-torus in flow.

2. Local Bifurcations of ICCs

Fig. 1 represents the schematics of bifurcation types of
ICCs; namely, Saddle-Node (SN), Pitchfork (PF), Tran-
scritical (TC), Double Covering (DC), Period Doubling
(PD), and Neimark-Sacker bifurcations of an ICCs. In SN
bifurcation, a pair of stable and saddle ICCs coalesces and
disappears. In PF bifurcation, a stable ICC is bifurcated
to unstable ICC in addition to two stable ICCs. In TC bi-
furcation, a stable ICC and an unstable ICC exchange sta-
bility. In DC bifurcatoin, an ICC is bifurcated to a single
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Figure 1: Local Bifurcations of an ICC.

twisted doubled ICC in addition to a saddle ICC1, and in
PD bifurcatoin, an ICC is bifurcated to one saddle ICC in
addition to two stalbe ICCs that are permuted by map. In
NS bifurcation, an ICC is bifurcated to one unstable ICC in
addition to a stable 2-torus. We insist that the local bifur-
cation of an ICC are restricted to these bifurcations and no
other bifurcation can occur. Moreover, due to Ashwin [2],
if one observe DC or PD bifurcation on a Poincaré section
of flow, these are the same in the original flow. Namely,
depending on the position of Poincaré section, one can ob-
serve either DC or PD bifurcation for the same flow. In
other words, there is only one curve doubling bifurcation
in flow, and we call it DC. In Ashwin’s paper, DC is called
curve doubling type I, and PD is called curve doubling type
II. In this study, we focus on these two types of curve dou-
bling. Fig. 2 explains how to take 2 types Poincaré sections
of 2-torus in flow. We name these 2 types of sections “Lon-

1The reason why we call this bifurcation DC, this bifurcation doubles
the length of an ICC.
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Figure 2: 2 types Poincaré sections of 2-torus in flow.

gitude Cut” and “Meridian Cut.”
Recently, to research the bifurcation mechanism of ICC,

we calculate the Lyapunov Vector (LV) [3] for continu-
ous dynamical systems [4]. The LV is a generalization of
eigenvector of a periodic solution to a quasi-periodic so-
lution. The LVs are calculated at each points of an ICC.
Therefore, on an ICC, the dense set of LVs become a bun-
dle, and we name this bundle the Lyapunov Bundle (LB).
In n-dimensional system, an ICC hasn LEs and corre-
spondingn LBs. We call non-zero Lyapunov Exponent
(LE) which is closest to zero, Dominant LE (DLE) and we
call coressponding LB Dominant LB (DLB). Moreover, we
clarify that the local bifurcation of ICC can be clasified by
the topology of DLB before the birfurcatoin point [5]. there
are 3 types of topology of LBs: the Annulus (A), Mobius
(M) and Focus (F) type. TheA type is orientable, and the
others are non-orientable when not only the topology but
also the tangent map are taken into consideration. Namely,
the A type is divided to 2 types: theA+ and A− type. In
theA+ type LB, a LV is mapped to the same side of an ICC
by tangent map. In theA− type LB, a LV is mapped the
other side of an ICC by tangent map and toggle between
each side of an ICC. In theM type LB, the form of LB is
Mobius band. In theF type LB, a LV is mapped no an ICC
with rotating and the shape of LB is like a Test-tube brush.
The bifurcation of 2-torus in flow can be characterized with
the combination of these two types of bifurcations, becase
the ICC on a Poincaré section is 2-dimentional torus n the
original flow. We have discovered that, when the DC bifu-
raction of 2-torus in flow is occured, the combinations of
LBs associated with the ICC are theA− × M or M × A−

or M × M type in map. We clarify that If one can observe
the A− or M type DLB on a Poincaré section of 2-torus in
flow before the local bifurcation point, DC bifurcation of
2-torus in flow occurs at the local bifurcation point. In this
study, to demonstrate the above-mentioned mechanism, we
introduce an actual circuit’s example by Kawakami et. al.
[1].

3. Circuit System and Equation

The circuit equation we concern is the following third-
order Duffing equation with periodic external force ap-
peared in [1]. This equation is obtained from a resonant cir-
cuit containing saturable reactors with secondary d-c wind-
ings [6] p. 265, Eq. (11. 8).

ẋ = y,
ẏ = −k1y− 1/8(x2 + 3z2)x+ Bcost,
ż = −1/8k2(3x2 + z2)z+ B0.

(1)

For changing a Poincaré section, we will transform Eq. (1)
to the following form

ẋ0 = x1,
ẋ1 = −k1x1 − 1/8(x2

0 + 3x2
2)x0 + Bx3,

ẋ2 = −1/8k2(3x2
0 + x2

2)x2 + B0,
ẋ3 = x4,
ẋ4 = µ(1− x2

3 − x2
4)x4 − x3.

(2)

wherex0 = x, x1 = y, andx2 = 2(z− 1.5). The solutions
of the last two equations in Eq. (2) becomes “x3 = cost”
by giving the initial conditionx3(0) = 1 andx4(0) = 0.
Therefore, dynamical behavior of Eq. (2) is the same as
Eq. (1). We fix the parameters in Eq. (2) ask1 = 0.03, k2 =

0.05 andB0 = 0.03. In this system, a 2-torus attractor in
flow exists atB = 0.07 as shown in Fig. 3 projected on the
x0-x1-x2 space.
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Figure 3: The 2-torus attractor in flow projected on thex0-
x1-x2 space. The parameters arek1 = 0.03, k2 = 0.05, B0 =

0.03 andB = 0.07.

4. Double Covering Bifurcation and 2 types Poincaŕe
Sectoins

Fig. 4 presents LEs of the 2-torus in terms ofB. M de-
notes the multiplicity of DLE.M = 1 is ommited for sim-
plicity. As a results, At the point labeled by1⃝, NS bifur-
cation of 1-torus (periodic solution) occured. At the point
labeled by2⃝, DC bifurcation of 2-torus (quasi-periodic so-
lution) occured. We forcused on the DC bifurcation point
labeled 2⃝.
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Figure 4: Lyapunov exponents of the attractor in Eq. (2)
with the increase ofB. Other parameters are the same
as those in Fig. 3. As a result, the point labeled by1⃝
presents Neimark-Sacker bifurcation of a 1-torus (periodic
solution). and the point labeled by2⃝ presents DC bifurca-
tion of 2-torus (quasi-periodic slution).

On the Poincaŕe section which is the meridian cut, one
can observe DC bifurcation of the ICC. Fig. 5(a) shows the
attractor before the DC bifurcatoin which is an ICC with
one loop. Fig. 5(b) shows the attractor after the DC bifur-
catoin which is an ICC with two loops. Fig. 6 represents
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Figure 5: The ICC (projected to thex1-x2 space) observed
on the Poincaŕe section which is the meridian cut. Param-
eters are the same as those in Fig. 3. (a) An ICC with one
loop before the DC bifurcation forB = 0.065. (b) An ICC
with two-loop after the DC bifurcation forB = 0.070.

the DLB on the meridian cut. The DLB is twisted once on
the ICC. Namely, this is cleary theM type DLB.

On the another Poincaré section which is the longitude
cut, one can observe PD bifurcation of the ICC at the same
parameter. Fig. 7(a) shows the attractor before the DC bi-
furcatoin which is an ICC with one loop. Fig. 7(b) shows
the attractor after the DC bifurcatoin which is two ICCs
with one loop. Namely, there are two disjoint loops and
the iterates successively toggle between them as shown in
every other iteration map Fig. 7(c). Fig. 8 represents the
DLB on the longitude cut. The DLB exists both side of the
ICC and LV is mapped toggle between each side of ICC.
Namely, this is cleary theA− type DLB.
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Figure 6: The theM type DLB on the meridian cut. Red
points present mapped points. A set of green lines present
the DLB.

5. Conclusion

We demonstrate that one can observe different 2 type bi-
furcations of ICCs depending on Poincaré sections in the
same 2-torus attractor in the original flow in the third-order
Duffing equation with periodic external force system [1].
We clarify that the DC bifurcation of the 2-torus is the com-
bination of 2 types LBs: theA− × M type.
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Figure 8: The theA− type DLB on the meridian cut. Red
points present mapped points. A set of green lines present
the DLB.
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