
Python Expressions of Variational Equations

Tetsushi Ueta

Center for Administration of Information Technology
2-1 Minami-Josanjima, Tokushima 770-8506, Japan

Email: ueta@tokushima-u.ac.jp

Abstract— Python is gaining attention as a fundamental
programming language for machine learning and data sci-
ence. This paper describes a detailed Python approach to
nonlinear problems, especially the bifurcation problems of
periodic solutions. It is a highly readable implementation
of the bifurcation algorithm, independent from the com-
puter and the operating system, and it allows an interactive
trial-and-error processing.

1. Introduction
Bifurcation phenomena are topological changes of equi-

libria or periodic solutions in the given dynamical system.
The conditions of a bifurcation can be formulated by the si-
multaneous equations including a fixed point condition and
the characteristic equation. To solve the equations accu-
rately for the fixed point and the parameter value, Newton’s
method is reasonably applied since above all conditions are
differentiable. Since these derivatives of the method are
solutions of the variational equations about the fixed point,
a numerical integration of both given differential equation
and variational equations is required.

When a nonlinear dynamical system is given by differ-
ential equations or difference equations, a comprehensive
analysis of the behavior of solutions in response to changes
in parameters is necessary to understand its dynamic prop-
erties. As it is difficult to obtain analytical solutions for
nonlinear systems in general, the solutions are computed
numerically and, if a periodic solution is confirmed after
the transient response, it will become the basis for analysis.
Changes in parameters can lead to changes in the stability
of these periodic solutions, namely bifurcation phenomena
may be found. Manifolds that provide bifurcation phenom-
ena in parameter space are called bifurcation sets, and the
main subject of this tutorial is to find these as simply as
possible. Maps on parameter space constructed by bifur-
cation sets (bifurcation diagrams) eloquently express the
qualitative properties of the given dynamical system and
will likely provide useful guidance to the objectives of in-
dividual problems. This tutorial shows a unique Python
approach in the calculation of bifurcation sets. ”Simply”
in Python means using adverbs like short, condensed, and
simple. It will increase readability and potentially prevent
the introduction of bugs. An example of a non-autonomous
system is taken to describe the Python implementation in

ORCID iD TU: 0000-0001-5810-437X

the computation of bifurcation sets of periodic solutions.
Bifurcation phenomena refer to changes in the stability

of equilibrium points and periodic solutions in a dynamical
system, and there is a high demand to accurately determine
the parameter values at which these occur. In general, it is
difficult to gain prior knowledge about periodic solutions,
let alone their bifurcation phenomena, based solely on the
given equations. Some trial and error is necessary. We
investigate which parameters of the differential equations
have solutions of what period, and secondarily, with what
initial values and through what transient responses we can
reach these solutions.

Details about related algorithms and tools, including
AUTO written by Doedel[2], are available in Kuznetsov’s
book[4]. This tutorial will primarily discuss the Python
implementation of an algorithm developed by Kawakami,
contemporaneous with the first version of AUTO. For es-
sential differences between related algorithms, please refer
to the relevant literature[4].

The tools developed in the lab based on specific algo-
rithms would be invaluable. In order to maintain, improve,
and expand them while reflecting new research trends, it’s
ideal to avoid as much as possible costs related to dependen-
cies on computers or operating systems and securing and
maintaining computational resources. Moreover, to obtain
meaningful data through trial and error, it would be desir-
able to interactively operate the tool while it is running.
Furthermore, apart from appearances on display, it is im-
portant to have visualization methods of a quality that can
withstand use in academic papers.

Python is a cross-platform, open-source computing lan-
guage that is gaining attention in the fields of data science
and AI. The Python libraries, Numpy and Scipy, have code
ported from the scientific computation libraries BLAS (Ba-
sic Linear Algebra Subprograms)[5] and LAPACK (Linear
Algebra PACKage)[1], inherited from the FORTRAN era,
and are highly reliable. Also, the graph drawing library,
Matplotlib, allows for high-quality graphics to be used in
interactive processing.

For Detailed explanation of computation algorithms for
bifurcation sets, please refer Refs. [3] and [6]. In this paper,
we focus on effectiveness, merits when the computation
algorithm is written by Python. Especially, the worth of
designing variational equations is highlighted.

– 663 –

2023 International Symposium on Nonlinear Theory and Its Applications

NOLTA2023, September 26-29, 2023, Catania and Online

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International.

mailto:ueta@tokushima-u.ac.jp
https://orcid.org/0000-0001-5810-437X

1.1. Preliminaries
Consider an initial value problem:

𝑑𝒙

𝑑𝑡
= 𝒇 (𝑡, 𝒙, 𝜆), with 𝒙(0) = 𝒙0, (1)

where, 𝒙 ∈ 𝑹𝑛 is the state, 𝜆 ∈ 𝑹 is a parameter. We assume
that 𝒇 : 𝑹𝑛 → 𝑹𝑛 is 𝐶∞-class and a 𝜏-periodic function
such that 𝒇 (𝑡 + 𝜏, 𝒙, 𝜆) = 𝒇 (𝑡, 𝒙, 𝜆). We define a solution
starting from 𝒙0 at 𝑡 = 0 as 𝒙(𝑡) = 𝝋(𝑡, 𝒙0, 𝜆) satisfying
𝒙(0) = 𝝋(0, 𝒙0, 𝜆) = 𝒙0. If there is a periodic solution in
Eq. (1), it is expressed as 𝝋(0, 𝒙0, 𝜆) = 𝝋(𝜏, 𝒙0, 𝜆).

For this periodic solution, we apply the Poincaré map
such as:

𝑇 : 𝑹𝑛 → 𝑹𝑛

𝒙0 ↦→ 𝑇 (𝒙0) = 𝝋(𝜏, 𝒙0, 𝜆).
(2)

This samples a point every 𝑡 from the orbit like
{𝒙0, 𝒙1, . . . , 𝒙𝑘 , . . . }, thus it naturally gives a discrete dif-
ference equation such as:

𝒙𝑘+1 = 𝑇 (𝒙𝑘). (3)

The periodic solution of Eq. (1) is corresponding to the
fixed point 𝒙0 such as 𝒙0 = 𝑇 (𝒙0). For ℓ ≥ 2, if 𝒙1 = 𝑇 (𝒙0),
𝒙2 = 𝑇 (𝒙1), . . ., 𝒙0 = 𝑇 (𝒙ℓ−1), i.e., 𝒙0 = 𝑇ℓ (𝒙0) is satisfied,
{𝒙0, 𝒙1, 𝒙2, . . . , 𝒙ℓ−1}. gives periodic points.

The variational equations are subsequent equation for
the given differential equation, and are derivatives of the
solutions by applying the chain-rule[3].

2. Computation of the fixed point
The condition of the fixed point is formulated by a two-

point boundary problem:

𝑇 (𝒙0) − 𝒙0 = 0 (4)

For the ℓ-periodic point, this condition is also available by
identifying 𝑇ℓ as 𝑇 .

To compute the fixed point 𝒙0 accurately, Newton’s
method is the priority choice since it converges quadrat-
ically if Eq. (4) is differentiable. When implementation,
the Jacobian matrix of Eq. (4) for 𝒙0 is required. It is given
by concretely:

𝜕

𝜕𝒙0

(
𝑇 (𝒙0) − 𝒙0

)
=

𝜕𝝋

𝜕𝒙0

����
𝑡=𝜏

− 𝑰𝑛, (5)

where 𝑰𝑛 is an 𝑛 × 𝑛 identity matrix. According to this
Jacobian matrix, the characteristic equation is given by the
following equation:

𝜒(𝜇) = det
(
𝜕𝝋

𝜕𝒙0

����
𝑡=𝜏

− 𝜇𝑰𝑛

)
= 0. (6)

The characteristic multiplier, which is the 𝑛 roots of this
equation, indicates the stability of the fixed point. 𝜕𝝋/𝜕𝒙0
is called a variation appeared both Eqs. (5) and (6). The
problem is how to find this variation.

Since the variations are the derivatives of the solution,
when the solution trajectories of the equation (1) are ob-
tained numerically, it is possible to substitute their numer-
ical derivatives as the variations. For example, if Δ > 0
is sufficiently small and 𝒙0 = (𝑥01, 𝑥02, . . . , 𝑥0𝑛)⊤, then We
can approximate the variation vector with respect to 𝑥01 by
the formula:

𝜕𝝋

𝜕𝑥01
(𝜏, 𝑥01, 𝑥02, . . . , 𝑥0𝑛) ≈
1
Δ

(
𝝋(𝜏, 𝑥01 + Δ, 𝑥02, . . . , 𝑥0𝑛)

−𝝋(𝜏, 𝑥01, 𝑥02, . . . , 𝑥0𝑛)
)

However, since numerical differentiation could essentially
contain errors, it may affect the value of the characteristic
multiplier and the convergence performance of Newton’s
method, so we want to avoid using it as much as possible.

2.1. Variations by initial values
Now, by substituting the solution into the original differ-

ential equation (1) and changing the order of differentiation,
we obtain the first variational equation, which is a variable-
coefficient linear differential equation[3]:

𝑑

𝑑𝑡

𝜕𝝋

𝜕𝒙0
=

𝜕 𝒇

𝜕𝒙

𝜕𝝋

𝜕𝒙0
, with

𝜕𝝋

𝜕𝒙0

����
𝑡=0

= 𝑰𝑛, (7)

where, 𝜕 𝒇 /𝜕𝒙 is the Jacobian matrix of Eq. (1) (differen-
tiating the right hand of Eq.(1) symbolically and partially
with the state variable 𝒙). More precisely, Eq. (7) is rewrit-
ten as follows.

𝑑

𝑑𝑡

©«

𝜕𝜑1

𝜕𝑥01

𝜕𝜑1

𝜕𝑥02
· · · 𝜕𝜑1

𝜕𝑥0𝑛
𝜕𝜑2

𝜕𝑥01

𝜕𝜑2

𝜕𝑥02
· · · 𝜕𝜑2

𝜕𝑥0𝑛
...

...
...

𝜕𝜑𝑛

𝜕𝑥01

𝜕𝜑𝑛

𝜕𝑥02
· · · 𝜕𝜑𝑛

𝜕𝑥0𝑛

ª®®®®®®®®®¬
=

©«

𝜕 𝑓1
𝜕𝑥1

𝜕 𝑓1
𝜕𝑥2

· · · 𝜕 𝑓1
𝜕𝑥𝑛

𝜕 𝑓2
𝜕𝑥1

𝜕 𝑓2
𝜕𝑥2

· · · 𝜕 𝑓2
𝜕𝑥𝑛

...
...

...
𝜕 𝑓𝑛
𝜕𝑥1

𝜕 𝑓𝑛
𝜕𝑥2

· · · 𝜕 𝑓𝑛
𝜕𝑥𝑛

ª®®®®®®®®®¬

©«

𝜕𝜑1

𝜕𝑥01

𝜕𝜑1

𝜕𝑥02
· · · 𝜕𝜑1

𝜕𝑥0𝑛
𝜕𝜑2

𝜕𝑥01

𝜕𝜑2

𝜕𝑥02
· · · 𝜕𝜑2

𝜕𝑥0𝑛
...

...
...

𝜕𝜑𝑛

𝜕𝑥01

𝜕𝜑𝑛

𝜕𝑥02
· · · 𝜕𝜑𝑛

𝜕𝑥0𝑛

ª®®®®®®®®®¬

(8)

Note that the both sides of this equation can be divided into
the first order simultaneous differential equation. There-
fore, one can obtain the fundamental matrix 𝜕𝝋/𝜕𝒙0 |𝑡=𝜏 by
integrating the initial value problem (7) from 𝑡 = 0 to 𝑡 = 𝜏
numerically with an appropriate solver like solve_ivp().
This can be utilized in Eqs (5) or (6) in Eq. (7). For the right
hand of the differential equation (1), the result of applying
the differentiation and the chain rule by the initial value is
arranged as a product of matrices.

– 664 –

Let us consider the implementation of Eq. (7) with
Python. Provide a two-dimensional ndarray for the Ja-
cobian matrix dfdx, and variations dphidx, a Python code
for the right hand of Eq. (8) is given by:
dfdx @ dphidx

where, ‘@’ is a new product operator which has been re-
leased at the version 3.5 and it is a macro for matmul func-
tion. Since solve_ivp() requires vectors for input/output,
therefore, we divide the matrix as the result of computation
for the right hand of Eq. (8) into 𝑛 column vectors，and
flatten into a single vector. Then append this vector into the
func (the right hand vector of Eq. (1). This procedure is
expressed as:
func.extend((dfdx @ dphidx).T.flatten())

where, .T attribute is a transpose, and .flatten() is a
flattening method. For other programming languages, we
should need several nest of loops for these operations and
multiplications, however, Python can express them as one
line.

3. Computation of bifurcation parameter sets
For computation of bifurcation parameter values, we si-

multaneously solve Eqs. (4), (6) for 𝒙0 and 𝜆, that is,{
𝑇 (𝒙0) − 𝒙0 = 0
𝜒(𝜇) = 0 (9)

where, we put a specific value to 𝜇 corresponding bifurca-
tion phenomenon, e.g., for the tangent bifurcation, we put
𝜇 = 1.

If the shape of the solution trajectory changes signifi-
cantly when the parameters are changed in the phase por-
trait, the fixed points and characteristic multipliers are cal-
culated by using the fixed point calculation tool described
in the previous section. When the characteristic multiplier
is close to the above specific value, taking that (𝒙0, 𝜆) as an
initial guess, we could get bifurcation parameter value by
solving Eq. (9) with Newton’s method.

The Jacobian matrix of Newton’s method is the following
formulation. ©«

𝜕𝝋

𝜕𝒙0
− 𝑰𝑛

𝜕𝝋

𝜕𝜆

𝜕𝜒

𝜕𝒙0

𝜕𝜒

𝜕𝜆

ª®®®®¬
(10)

Compared with the fixed-point computation, this scheme
requires the second variation regarding the initial value and
the parameter. However, we want to avoid using the numer-
ical differentiation since it may include errors.
3.1. Variations by parameters

The variations by the parameter value about the fixed
point is given by the numerical integration (solving ODEs)
for the following 𝑛-dimensional variable coefficient linear
non homogeneous differential equations:

𝑑

𝑑𝑡

𝜕𝝋

𝜕𝜆
=

𝜕 𝒇

𝜕𝒙

𝜕𝝋

𝜕𝜆
+ 𝜕 𝒇

𝜕𝜆
, with

𝜕𝝋

𝜕𝜆

����
𝑡=0

= 0 (11)

Let us describe this formula by Python. Define the varia-
tions by the parameter as dphidl and assume a vector dfdl
which is obtained by the partial differentiation for Eq. (1) by
a parameter symbolically, the computation of Eq. (11) and
appending the result into the vector func for solve_ivp()
is described as:

func.extend(dfdx @ dphidl + dfdl)

In the parentheses, for a product of a matrix and a vector,
the operator ‘@’ is also available.

3.2. Second variations by initial values

By partially differentiate Eq. (7) by 𝒙0, and arrange the
chain-rule, we have 𝑛3-tuple ODEs. We call this the sec-
ond variational equations. Let 𝜕2𝝋/𝜕𝒙2

0 be a 𝑛-dimensional
third-order tensor, the second variational equations are writ-
ten as:

𝑑

𝑑𝑡

𝜕2𝝋

𝜕𝒙2
0

=
𝜕 𝒇

𝜕𝒙

𝜕2𝝋

𝜕𝒙2
0
+ 𝜕2 𝒇

𝜕𝒙2

(
𝜕𝝋

𝜕𝒙0

)2
,

with
𝜕2𝝋

𝜕𝒙2
0

�����
𝑡=0

= 𝑶,

(12)

where, 𝑶 is an 𝑛× 𝑛× 𝑛 tensor whose all elements are zero.
𝜕2 𝒇 /𝜕𝒙2 is a Hessian tensor which is given by symboli-
cally partial differentiation of the Jacobian matrix 𝜕 𝒇 /𝜕𝒙
by the state variable 𝒙. While, 𝜕𝝋/𝜕𝒙0 is obtained by the
numerical integration of Eq. (7) The right hand of the sec-
ond term is described by this expression at the convenience
sake, however, the computation of a product for a tensor and
a matrix gives a complex procedure. In fact, if we consider
the case of 𝑛 = 2, a some part of the product should be
written as:

𝑑

𝑑𝑡

©«
𝜕2𝜑1

𝜕𝑥2
0

𝜕2𝜑2

𝜕𝑥2
0

ª®®®®®¬
=

𝜕 𝒇

𝜕𝒙

©«
𝜕2𝜑1

𝜕𝑥2
0

𝜕2𝜑2

𝜕𝑥2
0

ª®®®®®¬
+ 𝜕

𝜕𝑥0

𝜕 𝒇

𝜕𝒙

©«
𝜕𝜑1

𝜕𝑥0
𝜕𝜑2

𝜕𝑥0

ª®®®¬ (13)

where,

©«
𝜕2 𝑓1
𝜕𝑥2

𝜕𝜑1

𝜕𝑥0
+ 𝜕2 𝑓1
𝜕𝑦𝜕𝑥

𝜕𝜑2

𝜕𝑥0

𝜕2 𝑓1
𝜕𝑥𝜕𝑦

𝜕𝜑1

𝜕𝑥0
+ 𝜕2 𝑓1

𝜕𝑦2
𝜕𝜑2

𝜕𝑥0

𝜕2 𝑓2
𝜕𝑥2

𝜕𝜑1

𝜕𝑥0
+ 𝜕2 𝑓2
𝜕𝑦𝜕𝑥

𝜕𝜑2

𝜕𝑥0

𝜕2 𝑓2
𝜕𝑥𝜕𝑦

𝜕𝜑1

𝜕𝑥0
+ 𝜕2 𝑓2

𝜕𝑦2
𝜕𝜑2

𝜕𝑥0

.

ª®®®®¬
(14)

This seems to be difficult to check its validity. In-
deed, for Eq. (12), letting 𝒇 = (𝑓1, 𝑓2, . . . , 𝑓𝑛)⊤ and
𝝋 = (𝜑1, 𝜑2, . . . , 𝜑𝑛)⊤, the extracted expression of the gen-

– 665 –

eral term in the second variational equation is as follows:

𝑑

𝑑𝑡

𝜕2𝜑𝑖

𝜕𝑥0𝑘𝜕𝑥0ℓ
=

𝑛∑
𝑝=1

𝜕 𝑓𝑖
𝜕𝑥𝑝

𝜕2𝜑𝑝

𝜕𝑥0𝑘𝜕𝑥0ℓ

+
𝑛∑

𝑝=1

𝑛∑
𝑞=1

𝜕2 𝑓𝑖
𝜕𝑥𝑝𝜕𝑥𝑞

𝜕𝜑𝑝

𝜕𝑥0𝑘

𝜕𝜑𝑞

𝜕𝑥0ℓ
,

with
𝜕2𝜑𝑖

𝜕𝑥0𝑘𝜕𝑥0ℓ

����
𝑡=0

= 0

for 𝑖, 𝑘, ℓ = 1, 2, . . . , 𝑛

(15)

The total number of these equations becomes 𝑛3. This
expression is known as a formula, but we are not sure that
one can rely on this without any verification. The algorithm
requires multiple-nest loops to interpret this term, and we
have to check carefully the indices and loop counters to
avoid the mistakes.

Let us describe the right hand of Eq. (12) by Python.

dfdx@d2phidx2 + (d2fdx2@dphidx).T @ dphidx

where, d2phidx2 and d2fdx2 are the second variations
and a Hessian, respectively. No loops, slices, indices, loop
counters are required. An intuitive expression for the right
hand of Eq. (12) gives a proper computation of the sec-
ond variations. Provide P as this result, the extraction and
concatenation as a vector is given by:

P.transpose(0,2,1).flatten()

The point is changing the order of the axes for a transpose
operation.

From the Yang’s theorem, exchanging the order for 2-
variable partial differentiation only requires a half num-
bers of 𝑛3 tuple ODEs since the symmetric property:
𝜕2𝝋𝑖/𝜕𝑥𝑘𝜕𝑥ℓ = 𝜕2𝝋𝑖/𝜕𝑥ℓ𝜕𝑥𝑘 . Thus we have:

List 1: Computation for the right hand of Eq. (12)
1 ui, uj = np.triu_indices(n)
2 v = x.reshape(int(n*(n+1)/2), n)
3 X = np.zeros(n**3).reshape(n, n, n)
4 X[ui, uj] = v
5 X[uj, ui] = v
6 d2phidx2 = X.transpose(0, 2, 1)
7 P = (dfdx @ d2phidx2 + (d2fdx2 @ dphidx).T

@ dphidx).transpose(0, 2, 1)
8 func.extend(P[ui, uj].flatten())

List 1 shows the flow of passing only the minimum nec-
essary second variation to solve_ivp(). The first line
gives the row and column index lists of valid elements in
the upper triangular matrix. When the minimum necessary
number of second variations is already stored in the vector
x, we convert it back into a symmetric second variation
tensor d2phidx2 (rows 2–7) by specifying the index list
of the upper triangular matrix. No loops, no slice opera-
tions required. After that, we complete the computation of
the second variations (line 7) and pass only the optimized
number of the second variations to solve_ivp() (line 8).

3.3. Second variations by parameters
The last item we have to prepare for Newton’s method is

the second variations for a parameter. By doing a partial
differentiation for Eq. (7) by 𝜆 and applying the chain rule,
we have:

𝑑

𝑑𝑡

𝜕2𝝋

𝜕𝒙0𝜕𝜆
=

𝜕 𝒇

𝜕𝒙

𝜕2𝝋

𝜕𝒙0𝜕𝜆
+ 𝜕2 𝒇

𝜕𝒙2
𝜕𝝋

𝜕𝒙

𝜕𝝋

𝜕𝜆
+ 𝜕2 𝒇

𝜕𝒙𝜕𝜆

𝜕𝝋

𝜕𝒙0

with
𝜕2𝝋

𝜕𝒙0𝜕𝜆

����
𝑡=0

= 𝑶

(16)
where, 𝑶 is an 𝑛 × 𝑛 zero matrix. The right hand of Eq.
(16) is expressed as follows by Python:

func.extend(dfdx @ d2phidxdl
+ ((d2fdx2 @ dphidx).T @ dphidl).T
+ (d2fdxdl @ dphidx)).T.flatten()

where, dphidl should be set by solving Eq. (11) in advance.
Now we are ready to solve Eq. (9) by Newton’s method.

Accurate location of the fixed point and the bifurcation pa-
rameter value are obtained within a couple of iterations.
Bifurcation sets for the unstable periodic point which is un-
able to visualize by the brute-force method is able to com-
puted. For more details about computations of bifurcation
sets, please refer Ref.[7].

4. Conclusions
We try to express variational equations by Python. Very

simple codes can exclude a possibility of happening bugs,
insertion of vulnerable codes. For the product operation for
tensors, even einsum() operator can describe any rule of
productions, but we particularly confirmed that the default
operation of production operatior in Python is reasonable for
implementation of the chain-rule for variational equations.

Acknowledgments
This work is supported partially by KAKENHI grant

number 21K04109 and JST Moonshot R& D grant number
JPMJMS2021.

References
[1] E. Angerson et al. LAPACK: A portable linear algebra library for high-

performance computers. In Proc. ACM/IEEE Conf. Supercomputing,
pages 2–11, 1990.

[2] E. J. Doedel. AUTO: A program for the automatic bifurcation analysis
of autonomous systems. Congr. Numer, 30:265–284, 1981.

[3] H. Kawakami. Bifurcation of periodic responses in forced dynamic
nonlinear circuits: Computation of bifurcation values of the system
parameters. IEEE Trans. Circuits Syst., 31(3):248–260, 1984.

[4] Y. A. Kuznetsov. Elements of applied bifurcation theory, volume 112.
Springer, third edition, 2004.

[5] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic
linear algebra subprograms for Fortran usage. ACM Trans. Math.
Software, 5(3):308–323, 1979.

[6] K. Tsumoto, T. Ueta, T. Yoshinaga, and H. Kawakami. Bifurcation
analyses of nonlinear dynamical systems: From theory to numerical
computations. NOLTA, 3(4):458–476, 2012.

[7] T. Ueta and S. Amoh. To tacke bifurcation problems with Python (in
Japanese). IEICE ESS Fundamentals Review, 16(3):139–146, 2023.

– 666 –

	Introduction
	Preliminaries

	Computation of the fixed point
	Variations by initial values

	Computation of bifurcation parameter sets
	Variations by parameters
	Second variations by initial values
	Second variations by parameters

	Conclusions

