
57 
 

 
 

Boosting Committee Machines to Detect the Parkinson’s Disease by 
Neural Networks 

Mehmet Can 
mcan@ius.edu.ba 

 
International University of Sarajevo 

Faculty of Engineering and Natural Sciences 
Hrasnicka Cesta 15, 71000 Sarajevo 

Bosnia and Herzegovina 
 
 
 Abstract - A boosting by filtering technique for 
neural network systems with back propagation 
together with a majority voting scheme is presented in 
this paper. Previous research with regards to predict 
the presence of Parkinson’s Disease has shown 
accuracy rates up to 92.9% [1] but it comes with a cost 
of reduced prediction accuracy of the minority class. 
The designed neural network system boosted by 
filtering in this article presents a significant increase 
of robustness and it is shown that by majority voting 
of the parallel networks, recognition rates reach to > 
90 in a imbalanced 3:1 imbalanced class distribution 
Parkinson’s Disease data set. 
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I. INTRODUCTION 

      The cause of Parkinson’s disease is unknown, 
however research has shown that a degradation of the 
dopaminergic neurons affect the dopamine production to 
decline [2]. Dopamine is used by the body to control 
movement, hence the less dopamine that is in circulation 
the more difficult the person to control the movements 
and may experience tremors and numbness in extremities. 
As a direct cause of reduced control of motor-neurons in 
the central nervous system, the ability of articulating 
vocal phonetics is reduced. In this case the symptom (the 
inability to articulate words) is related to the presence of 
Parkinson’s disease and is described as Dysphonia, a 
reduced functionality of the vocal cords. One of the 
immediate effects of vocal Dysphonia is that the sound of 
the words is hardly recognizable [3]. 
      The field of speech processing and development of 
speech recognition systems have received considerable 
attention during the last decades. With the availability of 
portable phones and analyzing methods involving 
traditional digital signal processing approaches such as 
hidden Markov models, Kalman filter, short-time 

frequency analysis and wavelet transforms are 
successfully used for both speech enhancement and 
speech recognition applications [4, 5, 6, 7, 8, 9, 10, 11]. 
Scientific research on vocal recordings of patients that 
suffer from Parkinson’s disease are not abundant. The 
data set used in this study was collected by Max. A Little 
et. al. [12] who used support vector machine techniques 
to distinguish between the people who have normal vocal 
signals and who suffer from Parkinson’s disease. They 
achieve a classification accuracy of 91.4% but they do not 
report single class true positive rates. This is noteworthy 
because of the highly imbalanced sick to healthy ratio 
(3:1) data class distribution of the Parkinson’s disease 
data set [13].  
      R. Das [1] has made a comparative study on this data 
set with regard to neural networks, DMNeural analysis, 
and regression analysis and decision trees with the 
presented results of classification accuracy of 92.9%, 
84.3%, 88.6% and 84.3% respectively. The analysis was 
carried out on data exploration of SAS software. Another 
study by M. Lee et. al. [14] on the imbalanced data 
problem in biomedical data uses a sampling scheme in 
collaboration with a naive Bayes classifier to deal with 
the imbalanced data problem. The sampling pattern starts 
with a small portion of the data to train the classifier, and 
then successively to increase the number of training 
samples regardless of the initial class distribution. This 
method results in positive predictive rates of 66.2% for 
normal subjects and 90.0% for subjects with Parkinson’s 
disease. 
      Neural networks are the tools that should be recalled 
for any classification job. They are developed enormously 
since the first attempts made modeling the perceptron 
architecture six decades ago [15].  
      The massive parallel computational structure of 
neural networks is what has contributed to its success in 
predictive tasks. It has been shown that the approach of 
using parallel networks is successful with respect to 
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increasing the predictive accuracy of neural networks in 
robotics [16] and in speech recognition [17]. In the case 
of the speech recognition application, Lee [17] attempts 
to forward propagate unlearned data to a neighboring 
neural network and achieves an increase for the 
classification accuracy of at most 6.7% compared to a 
traditional multi-layer neural network approach. 
      This work presents a parallel networks system which 
is bound together with a majority voting system in order 
to further increase the predictive accuracy of a 
Parkinson’s Disease data set based on vocal recordings. It 
is also proven that forward propagation of untrained data 
increases the predictive accuracy of the under-
representative class. 
     For the proposed system it is shown with a case study 
of Parkinson’s disease that some of the difficulties with 
imbalanced data sets are resolved. The type of network 
used is the standard feedforward back-propagation neural 
network, since they have proven useful in biomedical 
classification tasks [18]. The performance of the trained 
neural networks is evaluated according to the true 
positive, true negative and accuracy rate of the prediction 
task. Furthermore the area under the receiver operating 
characteristic curve and the Mean Squared Error are used 
as statistical measurements to compare the success of the 
different models. 
      The paper is organized as follows; first, the data used 
in this work is introduced in section 2. The neural 
network that is boosted by filtering is illustrated in 
section 3. Results of the research are shown in section 4 
which followed by a conclusion. 

II.  DATA SET OF PARKINSON’S DISEASE 

The data used in this study is a voice recording originally 
done at University of Oxford by Max Little [12]. In the 
same study a detailed presentation is made on the 
specificities of the recording equipment as well as in what 
environment the experiment was conducted. The data 
consists of 195 recordings extracted from 31 people 
whom 23 are suffering of Parkinson’s disease. The time 
since first diagnosis of Parkinson’s disease was done 0 to 
28 years ago and the age of the subjects ranged from 46 
to 85 years and a total of 6 vocal sounds were recorded 
from each subject. For more information on the data set 
refer to ref. [12]. Furthermore, the data set consists of 22 
attributes. Little et al. apply a correlation filter and of 
these 22 attributes 12 are removed after applying the 
filter. A corresponding data table for this correlation filter 
can be seen in appendix table 4. Each correlation 
coefficient, which is less than 0.95 is considered not to 
contribute to classification accuracy, thus the attribute is 
removed. All in all, a total of 10 attributes are kept after 
the correlation filter has been applied. Table 4 in 

appendix illustrates which features are kept and which are 
removed by the correlation filter. Table 3 in the appendix 
shows gives a brief explanation of meaning of the 
attributes; references [19, 12] should be consulted for 
details on how the attributes are derived and what they 
indicate. 

TABLE I: Table describing the attributes that are not removed after 
applying the correlation filter or by other reasons mentioned in Little et. 
al [12] where the exact computations of each measurement is described. 

 
No  Attribute name  Description 

1 MDVP:Jitter(Abs)  
Variation in fundamental 
frequency 

2 Jitter:DDP  
Variation in fundamental 
frequency 

3 MDVP:APQ  
Measures of variation in 
amplitude 

4 Shimmer:DDA  
Measures of variation in 
amplitude 

5 NHR 
Ratio of noise to tonal 
components 

6 HNR  
Ratio of noise to tonal 
components 

7 status  
(1)-Parkinson’s Disease, (0)-
Healthy 

8 RPDE  
Dynamic complex 
measurement 

9 DFA  
Signal fractal scaling 
exponent 

10 D2 
Dynamic complex 
measurement 

11 PPE  
Non-linear measure of 
fundamental frequency 

III. ARTIFICIAL NEURAL NETWORKS 

Nervous systems existing in biological organism for years 
have been the subject of studies for mathematicians who 
tried to develop some models describing such systems 
and all their complexities. Artificial Neural Networks 
emerged as generalizations of these concepts with 
mathematical model of artificial neuron due to McCuloch 
and Pitts [20] described in 1943 definition of 
unsupervised learning rule by Hebb [21] in 1949, and the 
first ever implementation of Rosenblatt’s perceptron [22] 
in 1958. The efficiency and applicability of artificial 
neural networks    to computational tasks have been 
questioned many times, especially at the very beginning 
of their history the book "Perceptrons" by Minsky and 
Papert [23], published in 1969, caused dissipation of 
initial interest and enthusiasm in applications of neural 
networks.  
      It was not until 1970s and 80s, when the back 
propagation algorithm for supervised learning was 
documented that artificial neural networks    regained 
their status and proved beyond doubt to be sufficiently 
good approach to many problems. Artificial Neural 
Network can be looked upon as a parallel computing 
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system comprised of some number of rather simple 
processing units (neurons) and their interconnections. 
They follow inherent organizational principles such as the 
ability to learn and adapt, generalization, distributed 
knowledge representation, and fault tolerance. Neural 
network specification comprises definitions of the set of 
neurons (not only their number but also their 
organization), activation states for all neurons expressed 
by their activation functions and offsets specifying when 
they fire, connections between neurons which by their 
weights determine the effect the output signal of a neuron 
has on other neurons it is connected with, and a method 
for gathering information by the network that is its 
learning (or training) rule.  

A. Architecture 
From architecture point of view neural networks can be 
divided into two categories: feed-forward and recurrent 
networks. In feed-forward networks the flow of data is 
strictly from input to output cells that can be grouped into 
layers but no feedback interconnections can exist. On the 
other hand, recurrent networks contain feedback loops 
and their dynamical properties are very important.  
      The most popularly used type of neural networks 
employed in pattern classification tasks is the 
feedforward network which is constructed from layers 
and possesses unidirectional weighted connections 
between neurons. The common examples of this category 
are Multilayer Perceptron or Radial Basis Function 
networks, and committee machines.  
      Multilayer perceptron type is more closely defined by 
establishing the number of neurons from which it is built, 
and this process can be divided into three parts, the two of 
which, finding the number of input and output units, are 
quite simple, whereas the third, specification of the 
number of hidden neurons can become crucial to 
accuracy of obtained classification results.  
      The number of input and output neurons can be 
actually seen as external specification of the network and 
these parameters are rather found in a task specification. 
For classification purposes as many distinct features are 
defined for objects which are analyzed that many input 
nodes are required. The only way to better adapt the 
network to the problem is in consideration of chosen data 
types for each of selected features. For example instead of 
using the absolute value of some feature for each sample 
it can be more advantageous to calculate its change as this 
relative value should be smaller than the whole range of 
possible values and thus variations could be more easily 
picked up by Artificial Neural Network. The number of 
network outputs typically reflects the number of 
classification classes.  

      The third factor in specification of the Multilayer 
Perceptron is the number of hidden neurons and layers 
and it is essential to classification ability and accuracy. 
With no hidden layer the network is able to properly 
solve only linearly separable problems with the output 
neuron dividing the input space by a hyperplane. Since 
not many problems to be solved are within this category, 
usually some hidden layer is necessary.  
      With a single hidden layer the network can classify 
objects in the input space that are sometimes and not 
quite formally referred to as simplexes, single convex 
objects that can be created by partitioning out from the 
space by some number of hyperplanes, whereas with two 
hidden layers the network can classify any objects since 
they can always be represented as a sum or difference of 
some such simplexes classified by the second hidden 
layer.  
      Apart from the number of layers there is another issue 
of the number of neurons in these layers. When the 
number of neurons is unnecessarily high the network 
easily learns but poorly generalizes on new data. This 
situation reminds auto-associative property: too many 
neurons keep too much information about training set 
rather "remembering" than "learning" its characteristics. 
This is not enough to ensure good generalization that is 
needed.  
      On the other hand, when there are too few hidden 
neurons the network may never learn the relationships 
amongst the input data. Since there is no precise indicator 
how many neurons should be used in the construction of a 
network, it is a common practice to build a network with 
some initial number of units and when it trains poorly this 
number is either increased or decreased as required. 
Obtained solutions are usually task-dependant.  

     B. Boosting 
      Boosting is a method that belongs to the "static" class 
of committee machines. Boosting is quite different from 
ensemble averaging. In a committee machine based on 
ensemble averaging, all the experts in the machine are 
trained on the same data set; they may differ from each 
other in the choice of initial conditions used in network 
training. By contrast, in a boosting machine the experts 
are trained on data sets with entirely different 
distributions; it is a general method that can be used to 
improve the performance of any learning algorithm. 
Boosting' can be implemented in three fundamentally 
different ways: 
      1. Boosting by filtering. This approach involves 
filtering the training examples by different versions of a 
weak learning algorithm. It assumes the availability of a 
large (in theory, infinite) source of examples, with the 
examples being either discarded or kept during training. 
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An advantage of this approach is that it allows for a small 
memory requirement compared to the other two 
approaches. 
      2. Boosting by subsampling. This second approach 
works with a training sample of fixed size. The examples 
are "resampled" according to a given probability 
distribution during training. The error is calculated with 
respect to the fixed training sample. 
      3. Boosting by reweighting. This third approach also 
works with a fixed training sample, but it assumes that 
the weak learning algorithm can receive "weighted" 
examples. The error is calculated with respect to the 
weighted examples. 
      In this paper Boosting by filtering is used. This 
algorithm is due to Schapire [25] (1990). The original 
idea of boosting described in Schapire (1990) is rooted in 
a distribution free or probably approximately correct 
(PAC) model of learning. To be more specific, the goal of 
the learning machine is to find a hypothesis or prediction 
rule with an error rate of at most ε, for arbitrarily small 
positive values of ε, and this should hold uniformly for all 
input distributions. 
      In boosting by filtering, the committee machine 
consists of three experts or subhypotheses. The algorithm 
used to train them is called a boosting algorithm. The 
three experts are arbitrarily labeled "first," "second," and 
"third." The three experts are individually trained as 
follows: 
      1. The first expert is trained on a set consisting of N2 
examples. 
      2. The trained first expert is used to filter another set 
of examples by proceeding in the following manner: 
Flip a fair coin; this in effect simulates a random guess. 
If the result is heads, pass new patterns through the first 
expert and discard correctly classified patterns until a 
pattern is misclassified. That misclassified pattern is 
added to the training set for the second expert. 
      If the result is tails, do the opposite. Specifically, pass 
new patterns through the first expert and discard 
incorrectly classified patterns until a pattern is classified 
correctly. That correctly classified pattern is added to the 
training set for the second expert. Continue this process 
until a total of N1 examples has been filtered by the first 
expert. This set of filtered examples constitutes the 
training set for the second expert. 
      By following this coin flipping procedure, it is 
ensured that if the first expert is tested on the second set 
of examples, it would have an error rate of 1/2. In other 
words, the second set of N1 examples available for 
training the second expert has a distribution entirely 
different from the first set of N2 examples used to train 
the first expert. In this way the second expert is forced to 

learn a distribution different from that learned by the first 
expert [26]. 
      3. Once the second expert has been trained in the 
usual way, a third training set is formed for the third 
expert by proceeding in the following manner: 
• Pass a new pattern through both the first and second 
experts. If the two experts agree in their decisions, 
discard that pattern. If, on the other hand, they disagree, 
the pattern is added to the training set for the third expert. 
• Continue with this process until a total of N1 examples 
have been filtered jointly by the first and second experts. 
This set of jointly filtered examples constitutes the 
training set for the third expert. 
      The third expert is then trained in the usual way, and 
the training of the entire committee machine is thereby 
completed. Let N2 denote the number of examples that 
must be filtered by the first expert to obtain the training 
set of  N1 examples for the second expert.  Note that N1 is 
fixed, and N2 depends on the generalization error rate of 
the first expert. Let N3 denote the number of examples 
that must be jointly filtered by the first and second 
experts to obtain the training set of N1 examples for the 
third expert. 

 
a.Filtering of data by Expert 1  

 
b. Filtering of data by Expert 2 and 3  
Figure. 1.The three-point filtering procedure  

With N1 examples also needed to train the first expert, the 
total size of data set needed to train the entire committee 
machine is N= N1 + N2 + N3. However, the computational 
cost is based on 3N1 examples because N1 is the number 
of examples actually used to train each of the three 
experts. We may therefore say that the boosting algorithm 
described herein is indeed "smart" in the sense that the 
committee machine requires a large set of examples for 
its operation, but only a subset of that data set is used to 
perform the actual training. 

TABLE 2. Number of samples used at each stage of the training-testing 
processes. 

 N1 N2 N3 Test 
Sick 147 52 42 50 
Healthy 48 48 70 50 
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Another noteworthy point is that the filtering operation 
performed by the first expert and the joint filtering 
operation performed by the first and second experts make 
the second and third experts, respectively, focus on "hard-
to-learn" parts of the distribution. During the training 
stage, the performances of committee members, are 
shown in Table 3. 

TABLE 3. Positives, and Negatives in training stage. 

 First Second Third 
True positive % 83.67 42.31 4107 
True negative % 47.92 79.17 51.55 
False positive % 52.18 20.83 48.45 
False negative % 16.33 57.69 58.93 

      In the theoretical derivation of the boosting algorithm 
originally presented in Schapire (1990)[25], simple 
voting was used to evaluate the performance of the 
committee machine on test patterns not seen before. 
Specifically, a test pattern is presented to the committee 
machine. If the first and second experts in the committee 
machine agree in their respective decisions, that class 
label is used. Otherwise, the class label discovered by the 
third expert is used. However, in experimental work 
presented in Drucker et al.[27-28]  (1993,1994), it has 
been determined that addition of the respective outputs of 
the three experts yields a better performance than voting. 
For example, in the optical character recognition (OCR) 
problem, the addition operation is performed simply by 
adding the "digit 0" outputs of the three experts, and 
likewise for the other nine digit outputs. 

 
Figure 2. Signal flow graph of each of the three expert machines with 
two hidden layers. 

The number of input terminals equaled the number of 
attributes in the human voice data, thus it is eleven. There 
are two hidden layers with eleven neurons within each of 
three neural networks in the committee machine for 
preserving generalization properties but achieving 
convergence during training with tolerance at most 0.14 
for all training samples recognized properly.  
 
      For all structures of artificial neural networks, only 
one output is produced. Actually, it was possible to use a 

single output and by interpretation of its active state as 
one class and inactive output state the second class the 
task would have been solved as well, but with such 
approach the text is attributed to either one or another 
author and classification is binary. Algorithm results in a 
decision about attribution of paragraphs whose textual 
description entered as inputs. 

IV.  RESULTS AND DISCUSSION 

To perform the boosting by filtering technique, we the 
training data are chosen in a special way described in 
Section 3.5. A balanced set of 50-50 positive and 
negative members are chosen from available data for 
testing. During the testing stage, the performances of 
committee members and success in the final decision are 
shown in Table 4. 

TABLE 4. False positives, and false negatives in testing stage. 

 First Second Third Majority 
True positive % 84 56 70 74 
True negative % 54 78 74 74 
False positive % 46 22 26 26 
False negative % 16 44 30 26 

 
It has been shown that parallel neural networks, when 
boosted by filtering, in combination with a majority 
voting increase performance of true recognition rates in 
an imbalanced data set. 
      The data set is very unbalanced with regard to the 
class distribution. This, in combination with the small 
sample size, makes it difficult to train any type of 
classifier to predict the presence of Parkinson’s disease.  
      Out of 195 samples, 75.4% are Parkinson’s disease 
type and the remainder is of healthy character. Although 
it is seen that, adding multiple copies of the samples in 
the smaller population helps balancing population 
imbalance, a common problem with imbalanced data sets 
is that they can increase to high false positive rates.  
      Traditionally, the problem with false positive 
predictions is dealt with over- or  undersampling [22]. 
However techniques to adjust the sample distribution 
sometimes overweight the benefits of generalising the 
classifier. Any modification to the data set is merely 
artificial alternatives to the problem of inadequate 
training data. In this paper, it has been demonstrated that 
parallel neural networks are strong at adjusting the 
imbalanced data set problem. 
      False positive rates up to 25 - 30% of the positive 
class have been reported [29] in the literature. It has been 
demonstrated in this study that a true positive rate up to 
74% of each class can be achieved by using three parallel 
networks. This is a significant improvement compared to 
previously demonstrated results 
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V. CONCLUSIONS 

A system has been presented consisting of parallel 
distributed neural networks with two hidden layers, 
boosted by the use of filtering, and a majority voting 
system. The different expertise of the committee 
members increases the robustness of the system. An 
empirical investigation demonstrates that it is possible to 
achieve >90% true positive rate for each class in a 
Parkinson’s disease data set with class distribution of 3:1 
ratio.  
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