
Sphere and Cone Composite Realtime  

Shadows in OpenGL 
 

Aldina Pljaskovic, Dzenan Avdic,  

Department of Technical Sciences 

State University of Novi Pazar 
Novi Pazar, Serbia 

apljaskovic@np.ac.rs 

 

Petar Spalevic  

Faculty of Technical Science 

University of Pristina 

 Kosovska Mirovica,Serbia 

petar.spalevic@pr.ac.rs 

  

Dejan Rancic 

Faculty of Electrical Engineering 

University of Nis 
Nis, Serbia 

dejan.rancic@elfak.ni.ac.rs

 
Abstract—Adding shadows to 3D objects, in computer 

graphics, is very important for increasing realism of scene. 

OpenGL does not support shadowing methods directly. There 

are several methods for implementation of the shadows, but they 

are struggling with problems such as high demands for rendering 

scenes. On the other hand, methods, that do not require a lot of 

resources for implementation and rendering, do not give realistic 

shadows. This paper represents one method for efficient real-

time shadowing of a couple of objects, and emphasis is on their 

common characteristics. Since shadowing method for one 

primitive could be used with little improvement to make 

shadowing method for other object, this method is called 
composite method. 

Keywords—shadows, OpenGL, circle, triangle, sphere, cone, 

point light source. 

I.  INTRODUCTION 

Making a virtual reality using computer graphics is a 
fundamental part of designing computer games, software for 
modeling the interior and exterior, software dedicated for 
various types of simulations etc. Existence of shadows in scene 
is essential for the improvement of visual perception. Since 
using shadows depicts relations between objects on scene, 
users can sense more exactly the distance between two virtual 
objects. So shadows enhance the 3D impression in order to 
users can get a better immersive 3D feeling [1]. 

Physically, shadow consists of two components: the umbra 
and the penumbra. The umbra is dark component of shadow, 
and its creation is consequence of the fact that there is the area 
of a shadowed object that is not visible from any part of the 
light source. Light sources with their own area can make 
another component of shadows which is less dark from umbra. 
It happens when area of a shadowed object that can receive 
some, but not all, of the light from light source [2]. So, a point 
source light has no penumbra, since no part of a shadowed 
object can receive only part of the light [3]. 

OpenGL does not support shadows directly, it can be used 
to implement them a number of ways. The methods vary in 
their difficulty to implement, their performance, and the quality 
of their results. These qualities depend on two parameters: the 
complexity of the shadowing object and the complexity of the 

scene that is being shadowed [4]. 

 Approach described in this paper supports makes formation 
of shadows easier, taking into account the events that occur 
when objects are exposed to light in reality. In this example, 
the light source is a point source of light, and the surface, on 
which the light rays to form a shadow, is flat.  

The aim is to determine the minimum number of 
characteristic rays coming from the light source, and points out 
that these rays pass, which are essential for the formation of 
shadows on the surface. Shadows are created for the four 
different types of objects (circle, triangle, sphere and cone), but 
shadowing method made for one type of object is used, with 
small additions, in order to get the method for creating 
shadowing method form another type of object. The goal is to 
find the equations for shading and other primitives. Also, if 
complex object consists of a number of primitive objects, each 
of them will cast its own shadows, which will form a shadow 
of a complex object. 

The paper is organized as follows. The first section 
provides an overview of the existing methods, with emphasis 
on their advantages and disadvantages. The next chapter 
presents the mathematical basis for the derivation formula 
which allowed finding characteristic points for drawing 
shadows. Then follows the description and view the 
experiment in which an application is created on the basis of 
the formula, and the results are displayed. Finally, conclusions 
and trends in future work are given. 

II. RELATED WORK 

 There are three main strategies to make shadow in OpenGL: 

projected shadows, shadow volumes and shadow maps. 

Projected shadows are easier for implementation, but those 
shadows are not real. Idea is projecting the shadowed object to 

one of the axes. Moving of light source or of the shadowed 

object does not change shadow form. Trade-off is that this 

shadow does not behave like real shadow [5]. 

Shadow Volume is constructed by rays from the light 

source (Ray Tracing) that intersect the corners in the object 

that casts a shadow, and then continues on out of the scene. 

This creates a polygonal surface that contains objects that is 

shaded or partially shaded. Stencil buffer is used to calculate 
This paper was supported by the Ministry of Science and Technology of 

the Republic of Serbia within the projects TR35026 and III44006. 

mailto:apljaskovic@np.ac.rs
mailto:petar.spalevic@pr.ac.rs


what part of the objects that is inside the shadow volume. For 

every pixel in the scene the stencil value will be increased if 

the border for the shadow volume is intersected on the way 

into the shadow, and decreased if the border is intersected on 

the way out. The stencil operation is set to only increase or 

decrease when the depth test is passed.  

The result of this is that all the pixels in the scene with 

stencil values not equal to zero will identify the parts of an 

object that is inside the shadow. This method has problems 

with shadowing complex objects and its implementation has 

high demands.  

Since the shape of the shadow volume is decided by the 

corners of the object that casts the shadow, it is possible to 

construct complex shadow volumes [1] [6] [7]. 

Shadow Maps uses depth buffer and texture projection to 

create shadow in a scene. The scene is transformed to put the 

eye in the same position as the light. The objects in the scene 

are rendered and the depth buffer is updated. This creates 
shadow map. The shadow map is used for placing textures on 

the region in the shadow.  

This method doesn't depend on finding the silhouette for the 

objects that are casting shadow. Nor is it necessary to clip the 

result of the shadow. Every object that can be rendered can 

throw shadow with shadow maps. But, this method also has 

disadvantages which are aliased shadow edges, and self-

shadowing effects [8]. 

III. COMPOSITE SHADOWS 

As indicated in the previous section, all the methods for 
implementing shadows are compromising because of problems 
rendering the scene. Neither of these methods has not take 
place in some OpenGL library. Also, they all represent 
alternative ways for the formation of shadows, and some of 
them are good in certain circumstances, while under other 
conditions they show their weaknesses. 

The goal of this research is to establish a single library 
which use will be possible to add a shadow after drawing 
primitives. As the shadows are realistically drawn for each of 
the primitives, complex objects consisting of 2D and 3D 
primitives will have his shadow which will be formed by the 
shadows of its component objects. How would be solved the 
problem of rendering? This approach uses the phenomena that 
occur in real-world in case when scene is lighted by point 
source of light, which has ability to move along the axis of the 
co-ordinate system [9].  

But the effectiveness of these way of rendering of shadows 
is in the fact that there is need to calculate a minimum points 
relevant for drawing shadows. Second circumstance is the use 
of the fact that there are similarities between shading the 
primitives. Sphere is made by the rotation of circle around one 
of axes; cone is made by rotation of triangle. So with finding 
method for forming the shadow for 2D objects, it is easy to 
create the shadow for the 3D object. 

The paper describes the following analysis. For four objects 
(circle, triangle, sphere and cone) that are located away from 

the surface for a distance d, the shadow is on the surface that is 
created by the point light source with the possibility of 
movement. The surface is flat. The light source has the ability 
to move the X and Y axes. 

When the light source is closer to the Y axis, the shadow is 
increased, and vice versa. When the light source moves away 
from the object in X axis, the shadow objects are also moving 
in the opposite direction to the movement of the light source. 

Due to the large number of options and restrictions for 
showing 3D system on 2D paper, some less relevant 
parameters for calculating the are taken as fixed: 

• The light source is always above shadowed object (yi > 
yp + hp) 

• X and Z coordinates of the object is point 0. 

• xi, yi, zi are the coordinate position of the light source (zi 
= 0) 

• hp is the height of the object (height of the isosceles 
triangle and of cone, distance between diameter of 
circle and sphere and the light source). 

• r is the radius of the circle and the sphere. 

• d is distance between the object and the surface. 

• xp, yp, zp are coordinates of center point of object (for an 
isosceles triangle that is the center of the base, for circle 
it is the circle's center, also for the sphere, and for the 
cone it is center of its base). (xp, zp = 0). 

A. Circle 

When a point light source illuminates the circuit installed 

parallel to the plane of the surface, there is only the umbra. 

Two cases are considered: when the light source is just above 

the circle (x = xp= 0) (Fig.1.a) and when the light source to the 

left or right of the shadowed object(Fig.1.b). 

Important point is the center of the shadow. Also, 

important information needed for rendering shadows is the 

size of the radius of the shadow. It is well known that the 

shadow of the circle in this case is also a circuit. Coordinates 

of the center of shadow circle will be found using the equation 
of line that passes through the two points. These points are the 

center of the light source and the center of shadowed object. 

If the source of light just above the object, coordinates of 

center of shadow are known and they are coordinates of 

beginning pint (0, 0, 0). If not, the formula for calculating the 

center of the shadow is given with equation (1). 

 

𝑥𝑠 =
−𝑑∙𝑥𝑖

𝑦𝑖−𝑑
   (1) 

 
For the case d = 0, xs is zero, which means that there is no 

shadow if the object is on the surface and the light source is 
above it. 

Calculating the length of the radius of the shadow is done 
using the theorem on similarity of triangles. Figure 1 shows the 
relevant triangles for calculating the increasing factor for 



original radius. The equation for calculating the radius of the 
shadow is given in (2). From this formula it can be seen that 
the length of the radius depends on r, yi, and d. 

 𝑟1 =
𝑟 ∙𝑦𝑖

𝑦𝑖−𝑑
   (2) 

 
The shadow of the circle is a circle with its center at the 

center is (xs, 0, 0), and which radius is r1. 

Including the equationℎ = 𝑦𝑖 − 𝑑, equations 1 and 2 can be 
expressed as eq.3 and eq.4: 

𝑥𝑠 =
−𝑑∙𝑥𝑖

ℎ
   (3) 

 

𝑟1 =
𝑟 ∙𝑦𝑖

ℎ
    (4) 

 
Fig. 1. Shadow of circle on plat surface using point light source: left )xi=xp=0 

right) xi≠xp 

B. Triangle 

A shadow for an isosceles triangle whose base is parallel 

to the X axis is line. Characteristic points for drawing the 
shadows are the points where the beam of light that passes 

through the vertices of the triangle cut surface.  

Since the triangle is upright, and Z coordinates of the light 

source and the shadowed object is zero, it will be all three 

points lie on the x-axis and the Z and Y coordinate of them 

will be 0 (Y coordinate of the shadow is always 0 because the 

surface is located at the Y = 0).  

So these three characteristic points are collinear, i.e. they 

do not make a triangle but a line. A mitigating circumstance is 

that we calculate the shadow of the circle. That can be used to 

facilitate this work on the following way.  

There is correspondence between the base of triangle and 

its center and diameter of circle and its center, because shadow 

in both cases is a line.  

Half of the base is radius. Thus we find the center of the 

shadow and the length of the new basis (eq. 5 and eq.6).  

Now the problem is reduced to the finding of one 

characteristic point, which is the triangle peak that is common 

point of two equal edges. It will be calculated according to the 

eq. 7.  

If the base of the triangle parallel to the Z axis, then the 

characteristic points are not collinear, i.e. the shadow of the 

peak is on the X-axis, but the basics are propagating along the 
Z axis.  

Those tree points make the shadow which is also a 

triangle. In this case, coordinates of important points for 

drawing shadow of triangle are: P1(0, 0, zs1), P2(0, 0, zs2), 

P3(xs3, 0, 0), where zs1 and zs2 are calculating similar as xs1 and 

xs2. The two cases: when light source is just above the triangle 

and when light source is right/left are shown on Figure 2.  

 
Fig. 2. Shadow of triangle on plat surface using point light source: left) 

xi=xp=0; right) xi≠xp 

If a is base length, where r=a/2, coordinates of important 

points for drawing shadow of triangle are: P1(xs1, 0, 0), P2(xs2, 

0, 0), P3(xs3, 0, 0). 

𝑎1 =
𝑎∙𝑦𝑖

𝑦𝑖−𝑑
   (5) 

 

𝑥𝑠 =
−𝑑∙𝑥𝑖

𝑦𝑖−𝑑
   (6) 

 

𝑥𝑠1 = 𝑥𝑠 −
𝑎1

2
    (7) 

 

𝑥𝑠2 = 𝑥𝑠 +
𝑎1

2
    (8) 

 

𝑥𝑠3 =
𝑥𝑖 ∙ ℎ𝑝+𝑑 

𝑑+ℎ𝑝−𝑦𝑖
   (9) 

C. Sphere 

The sphere is a 3D object that is created by circle rotation 
around the X axis, but shifted to r on Y axe. Only difference is 

distance between circle and the surface. By the distance 

between those two objects we consider distance between 

center of sphere and the surface. Therefore, the equations for 

the shadow of the sphere are given before in circle part. The 

two cases: when light source is just above the sphere and when 

light source is right/left are shown on Figure 3.  

 

 
Fig. 3. Shadow of the sphere on plat surface using point light source: left) 

xi=xp=0 right) xi≠xp 

 



D. Cone 

Cone is a 3D object that is created by rotation of a triangle 

whose base is parallel to the Z axis. To calculate the necessary 

shadow points, three characteristic pieces of information are 

need: projection of top of cone, base center projection and the 

radius of the shadow. It is obvious that the shadow can be 

already calculated using 2D shadow elements that are its 

foundation, and those are the triangle and the circle. Shadow 

of the base is the same as the shadow of the circle. Top 

projection is the same as the projection isosceles triangle top 

which base is parallel to the Z axis, which has been already 

analyzed. The shadow is an union of circle and triangle. If the 
light source is just above the cone, shadow consists just of 

circle (Fig. 4). Calculation for the shadow of circle is already 

given above, and triangle part of the shadow is determined by 

P1(0, 0, zs1), P2(0, 0, zs2), P3(xs3, 0, 0), where zs1 and zs2 are 

calculating similar as xs1 and xs2. 

 

 
Fig. 4. Shadow of the cone on plat surface using point light source: left) 

xi=xp=0 right) xi≠xp 

IV. EXPERIMENTS 

To confirm the validity of practical formulas and check the 

speed and the reality drawing shadows created a C ++ 

application that uses OpenGL. The application takes into 

account the above limitations. The application has following 

features: 

 Changing of shadowed object (keys K, L, T, U) 

 Changing the position of camera (keys Y, X, C, A, S, 

D) 

 Changing the position of the point light source (keys V, 

B, N, M).  

The results for each element are given with following screenshots. 

 
Fig. 5. Implementation of shadows in OpenGL C++ application - circle 

 
Fig. 6. Implementation of shadows in OpenGL C++ application - triangle 

 
Fig. 7. Implementation of shadows in OpenGL C++ application - sphere 

 
Fig. 8. Implementation of shadows in OpenGL C++ application - cone 

V. CONCLUSIONS AND FUTURE WORK 

Methods for obtaining the shadows of different objects 

need not be independent. It should be used to make the 

calculation of the shadows of objects easier.  

Shadow of a complex object is the union of the shadows of 

its constituent elements. By projecting all points on the surface 

slows drawing of the shadows.  

Therefore, it is enough to find the minimum number of 

characteristic points of shadow, and the shadow and reality will 
not be disturbed, and rendering of the shadow will be easy and 

cheap. 



 In the future, the focus will be on the finding methods for 

shading remaining primitives that are commonly used. And 

other cases will be analyzed: the case when a shaded object can 

move, what happens if there are more sources of light, or more 

objects in the scene, or if the surface is not flat.  

After analyzing all of the conditions in which the shaded 
object can be found, the output should be a unique and efficient 

method of forming real OpenGL shadows. 

REFERENCES 

[1] M. Haller, S. Drab and W.Hartmann, “A realtime shadow approach for 

an Augmented Reality application using shadow volumes” VRST ’03 
Proceedings of the ACM symposium on Virtual reality software and 

technology pp. 56 – 65 

[2] T. McReynolds, D. Blythe, “Advanced Graphics Programming Using 
OpenGL” The Morgan Kaufmann Series in Computer Graphics and 

Geometric Modeling, ISBN: 1-55860-659-9, 2005. 

[3] C. Wyman and C. Hansen. „Penumbra maps: Approximate soft shadows 
in real-time.“ Proceedings of Eurographics Symposium on Rendering 

2003, pp 202–207, June 2003. 

[4] E. Angel, D. Shreiner, “Teaching a Shader-Based Introduction to 

Computer Graphics” Computer Graphics and Applications, IEEE, 
Vol.31, No.2, pp. 9-13, 2011. 

[5] N. Liu and M. PANG, “A Survey of Shadow Rendering Algorithms: 

Projection Shadows and Shadow Volumes” ,  Second International 
Workshop on Computer Science and Engineering, 978-0-7695-3881-

5/09 -2009 IEEEDOI 10.1109/WCSE.2009.107 pp: 488 – 492.2009 

[6] H. Kolivand, M.S. Sunar, N.M. Jusoh and  F. Olufemi, “Real-Time 

Shadow Using a Combination of Stencil and the Z-Buffer” The 
International Journal of Multimedia & Its Applications (IJMA) Vol.3, 

No.3, pp 27-38, August 2011. 

[7] M. D. McCool, “Shadow Volume Reconstruction from Depth Maps,” 
ACM Transactionson Graphics, Canada N2L 3G1, pp.1-25, January 

2000. 

[8] X. Hu, Y. Qi and  X. Shen, “A Real-Time Anti-Aliasing Shadow 
Algorithm Based on Shadow Maps”  Pattern Recognition CCPR '08. 

Chine, Octobar 2008. 

[9] S. Brabec, T. Annen, and H. Seidel. „Shadow mapping for 
hemispherical and omnidirectional light sources“ Advances in 

Modelling, Animation and Rendering (ProceedingsComputer Graphics 
International 2002), pp: 397–408. Springer, 2002. ISBN 1-85233-654-4. 

[10] J. Kessenich, D. Baldwin, and R. Rost, „The OpenGL Shading 

Language“ (Version 1.051), 3DLabs, Inc., Egham, Surry, Feb. 2003, 
www.opengl.org/documentation/oglsl.html 

[11] T. Akenine-Möller, E. Haines, and N. Hoffman.” Real-Time 

Rendering”. A K Peters, 3rd edition, 2008. 

[12] R. Fernando (ed.). GPU Gems:“ Programming Techniques, Tips, and 

Tricks for Real-Time Graphics“, Reading, MA: Addison-Wesley 
Professional, 2004. 

 


