ShortestPathACO based strategy
to find the Shortest Path between two nodes

Mariusz Gtabowski, Bartosz Musznicki, Przemystaw Nowak and Piotr Zwierzykowski
Poznan University of Technology, Faculty of Electronics and Telecommunications,
Chair of Communication and Computer Networks, Polanka 3, 60-965 Poznan, Poland

Abstract—The paper presents the means to use Shortest-
PathACO algorithm to find the shortest path between a pair
of nodes in a directed graph. This Ant Colony Optimization
metaheuristic based algorithm allows to influence the quality
of generated solutions, through the application of an approach
dissimilar from the one typically used to solve a single-pair
shortest path problem. The operation of the algorithm is discussed
in relation to the pseudocode introduced in the paper. The
attention paid to the parameters that influence the results is
accompanied by the motivation of usage scenarios. Experiments
carried out within the custom made framework of the experiment
are the source of suggestions concerning the selection of values
and computation methods optimal for particular applications.
The influence of the choice of number of ants and the pheromone
evaporation speed is investigated. The quality of solutions gener-
ated by ShortestPathACO algorithm is also addressed. The issues
of execution time and convergence achievement are considered as
well.

I. INTRODUCTION

The ShortestPathACO algorithm is a method and a set of
recommendations to ensure that the Ant Colony Optimization
(ACO) metaheuristic for solving the shortest path problem is
properly applied. A detailed introduction to the methodology,
discussion on the context and the methods for finding paths,
as well as a discussion on the classes of parameters and
the methods for updating pheromones are presented by the
authors in [1]. The following sections of this publication
are meant to present the analysed problem more thoroughly
and go deeper into the purpose of investigating some of the
considerations mentioned and indicated in the previous paper,
i.e., the application of the ShortestPathACO-based strategy in
finding the Shortest Path between two nodes.

A. Problem of the shortest path between a pair of nodes

For the directed graph G = (N, .A), where N is the set of
nodes (vertices) and A is the set of arcs (edges), we assign
the length a,; to each of its edges (i,j) € A (alternatively,
this length can be also called the cost). For the resulting path
(n1,ne,...,n), its length can be expressed by Formula (1).

k—1
A5 = Zanini+1 (D
i=1

A path is called the shortest path if it has the shortest length
from among all paths that begin and terminate in given
vertices. The shortest path problem involves finding paths with
the shortest lengths between selected pairs of nodes. The initial
node will be designated as s, while the end node as ¢.

A number of basic variants of the shortest path problem
can be distinguished [2]:

e finding the shortest path between a pair of nodes,
e finding the shortest paths with single initial node,
e finding the shortest paths with single end node,

e finding the shortest paths between all pairs of nodes.

These matters find their application in different areas
such as routing in communication networks [3]-[5], pipeline
transport or satellite navigation. Therefore, this paper focuses
on discussing a method for solving the problem of the shortest
path between a pair of nodes in a directed graph, often called
a single-pair shortest path problem [6].

B. ShortestPathACO algorithm

Before executing the ShortestPathACO algorithm, one
should have a full awareness that the Ant Colony Optimization
metaheuristics has been constructed to seek solutions of NP-
hard problems [7]. As such, it does not always guarantee
finding the most optimum solution. Therefore, the obtained
results may be both optimal (accurate) and approximations
that depend on the degree of fitness of the algorithm itself for
each individual problem to be solved. Moreover, in particular
situations a solution may not even be found. Because of this
particular feature, it is extremely important to first analyse
a given task and to properly select the operations running
parameters to be executed and to perform their optimization.
Having carried out many research studies and tests for the
ShortestPathACO algorithm, appropriate parameters, methods
and ways that prove to be the most effective in solving a
given problem have been eventually chosen and established
by the authors. For this reason, the further part of the paper
discusses the authors’ proposal of the parameters that can be
used in solving a single-pair shortest path problem, presents a
pseudo-code of the method and gives a detailed discussion on
the operation of the algorithm. Then, we proceed to present
the relevant simulation study carried out within the framework
of the experiment and analyse the influence of the choice of
parameters on the quality of generated solutions, execution
time and on the process of reaching convergence for the
algorithm. Final remarks and conclusions are presented in the
summary.

II. TYPES OF PARAMETERS AND THEIR VALUES

The ShortestPathACO algorithm uses the following param-
eters:

m — the number of ants,

o — the parameter that defines the influence of pheromones
on the choice of the next vertex,

B — parameter that determines the influence of remaining
data on the choice of the next vertex,

p — parameter that determines the speed at which evapora-
tion of the pheromone trail occurs; takes on values from
the interval (0, 1),

7o — initial level of pheromones on the edges,

Tmin — the minimum acceptable level of pheromones on edges,

Tmaz — Maximum acceptable level of pheromones on edges,
s — initial node,
t — end node.

In solving a single-pair shortest path problem, the parame-
ters m, «, S and p have to be accommodated to a specific
problem, whereas the value 7y is set to 0 to provide the
opportunity of the use of the transition stage during which
the calculation of the edge coefficients involves one of the
adopted equations [1]. The parameter 7,,;, is set to 0, while
Tmaz» through the application of a very high value, is not taken
into consideration at all.

Finding paths is executed according to a time list that
keeps records of times during which an ant reaches a given
vertex. What follows is that the quality of the paths generated
by individual ants is enhanced more efficiently. To ensure
checking of all possible edges, Formula (2) is used in the
process of selection of the next vertex, while in the transition
stage Formula (3) is used. The use of the second stage during
the process of selection of next edges is deactivated (the edge
coefficient equal to 0, which would result in a random-type
selection of edges), because this can be compensated by a
greater number of ants, thus optimizing the efficiency of the
algorithm.

vi_nodes; = false
vi_edges;; = false
vi_nodes; = true

(1 + 5)2 for

(1 +3) for

qij = vi_edges;; = false
a vi_nodes; = false
T5(1+68) for vi_edges;; = true
Ti; elsewhere
2
1 \“ 2 vi_nodes; = false
(“w‘) (1+5)" for vi_edges;; = false
1\¢ vi_nodes; = true
ql-- — (‘lij) (1+5) for vi_edges;; = false
iJ .
1\ ¢ vi_nodes; = false
(aij) (1+p4) for vi_edges;; = true
(al -) elsewhere
ij
3
AT = L)
ap

The levels of pheromones are updated in steps during the
return of ants to the initial vertex, which makes it possible to
take account of the quality of a solution in the determination of
AT, and at the same time enhances short paths. The A itself
is calculated by Formula (4) that takes into consideration the

length of a path because, in the case of the considered problem,
it is the only necessary element.

In the initial runs of the algorithm (the first three routes
of each of the ants), A7 can be set to 0 to introduce more
randomness and increase variability in the choices of the ants,
which is particularly helpful in finding new paths, particularly
in graphs with complex structure. However, this strategy was
discarded in the experiments discussed in this paper because
it was proved that the result of its introduction was a longer
time for the algorithm to achieve convergence.

III. PSEUDO-CODE AND A DETAILED DISCUSSION ON THE
ALGORITHM

Pseudo-code 1 presents the ShortestPathACO algorithm. As
in the majority of algorithms, its operation is based on the
loop (line 2) that is executed iterattion_limit times at the
maximum. In the majority of cases, with large values of this
limit, the algorithm will achieve convergence much earlier and
will terminate its operation. The mentioned limit is introduced
to prevent the algorithm from being infinitely executed in the
case of a failure in finding a solution. In each iteration, an
ant that is assigned to the lowest time value in the list is
retrieved from the time list. If a greater number of ants has
been assigned the same time, then they are retrieved one by
one in the subsequent iterations. Immediately after the retrieval
of an ant from the list, this ant is removed form the list. Each
ant has been assigned to the vertex in which it is currently
located. This vertex is then compared with the target vertex in
line 8.

If the current ant reached the end vertex, a number of oper-
ations is initiated. The ant’s mode is realigned to reverse — this
means that in next iterations the ant will be returning towards
the initial vertex along the path that has been previously found
by it. The next operation is to calculate A7 for this ant, which
is executed by Function ComputeDTau(k,length,m) in line 10.
If the ant embarks on one of the first 3 routes, A7 takes on
the value O for the ant — the pheromone trail on this path is
not further enhanced, which has been explained and reasoned
earlier. If, however, the ant has already covered as many as 3
routes, A7 is calculated in a regular way as the inverse of the
length of the path found by the ant. If the ant’s path is the
shortest path from among the number of all paths that have
been found so far, the value A7 is multiplied for the ant by the
number of ants m. This operation allows us to considerably
shorten the execution time of the whole of the algorithm.

The next step is to compare again the length of the path
found by the ant with the length of the shortest path that has
been found so far. This operation provides the opportunity to
update the value of the length of the path and the path itself
that are stored globally. Then, it is checked whether the ant’s
path has the length that is equal to the length of the path found
by the ant that reached the end vertex earlier as the preceding
ant. The reason for this operation is the need for establishing
whether the pheromone trail on the paths of the graph has
been stabilized enough to assume that the next iterations and
the paths to be found by ants in the process will not introduce
any improvement to the currently best solution found so far.
Hence, if all ants, one by one, find a path with the same
length, the algorithm terminates its operation. If, however, the

Algorithm 1: ShortestPathACO

Data: graph G = (N, A), edge weights vector a, initial vertex s, end vertex ¢, number of ants m, pheromone influence factor v, influence factor for other related data 3,
pheromone evaporation speed p, initial value of pheromones 7, minimum value of pheromones 7y, i, , maximum value of pheromones 7,4, iteration limit
1teration_limait

Result: path found path, length of found path length

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65 end

Initialize(G,s);
for iteration < 1 to iteration_limit do

k < GetRoot (list);

time <— GetRootKey (list);
RemoveRoot (list);

i < GetNode (k);

skip < false;

if i = ¢t then

end

SetMode (k, true);

ComputeDTau (k, length, m);

if GetLength (k) < length then
path < GetPath (k);
length < GetLength (k);

end

if GetLength (k) = last_length then
convergence <— convergence + 1;
if convergence > m then break;

else
convergence <— 0;

end

last_length < GetLength (k);

(e, f) + GetLastArc (k);

SetNode (k, e);

Add (list, time + aef, k);

skip + true;

if GetMode (k) = false then

arc <— SelectNextArc (k,1);
if arc = NULL then
(e, f) < GetLastArc (k);
if e = s then
NextRun (G, k, s);
Add (list, time, k) ;
else
RemoveLastArc (k);
SubstractFromLength (k, aey);
SetNode (k, e);
Add (list, time + Qef, k);
end
else
(i,7) « arc;
SetNode (k, j);
SetVisited(k,j);
vi_nodes; < true;
vi_arcg; < true;
AddArc (k, (4,7));
AddToLength (k, a;;);
Add (list, time + a;;, k) ;
end

else if skip = false then

end

AddToTau (k) ;
if ¢ = s then
NextRun (G, k, s);
Add (list, time, k) ;
else
RemoveLastArc (k);
(e, f) + GetLastArc (k);
SetNode (k, e);
Add (list, time + acy, k) ;
end

for time to GetRootKey (list) —1 do

end

Evaporate();

// Get an ant from the beginning of list
// Get time from the beginning of list
// Remove ant from the beginning of list
// Get current vertex of ant k

// Set the k ant’s mode to reverse
// Calculate AT of ant k

// Get length of path of ant k

// Get path of ant k

// Get length of path of ant k

x>

// Get length of path of ant

// Get length of path of ant k

// Get the last edge from the path of ant k
// Set the current vertex of ant k

// Add ant k to list with given time

// Get mode of ant k
// Select next vertex for ant k

// Get the last edge from the path of ant k

// Prepare ant k for next route
// Add ant k to list with given time

// Remove the last edge from the path of ant k
// Subtract a.y from length of path of ant k
// Set the current vertex of ant k

// Add ant k to list with given time

// Set the current vertex of ant k
// set vertex j as "visited" by ant k

// Bdd edge (i,j) to path of ant k
// Add a;; to the length of path of ant k
// Add ant k to list with given time

// Add AT of ant k to the last edge of its path

// Prepare ant k for next route
// Add ant k to list with given time

// Remove the last edge from the path of ant k
// Get the last edge from the path of ant k

// Set current vertex of ant k

// Add ant k to list with given time

// Get time from the beginning of list
// Evaporate pheromones on all edges

preceding ant finds a path with a different length, the auxiliary
counter for the evaluation of the convergence of the algorithm
convergence is reset.

It is worthwhile to emphasise at this point that a compari-
son of the lengths of subsequent paths found in the iterations
is not fully reliable because it may turn out that different
paths can have exactly the same length. However, making a
comparison of the whole of the paths, edge by edge, would be
too costly computationally. On the other hand, even if different
paths have the same length, it is of no major significance
because no matter which path will be chosen, we will get
the optimum solution in the end.

After these operations have been completed, the length of
a path of a given ant is recorded and the last edge of this
path is mapped to the list. The edge is necessary to determine
the preceding vertex which was visited by the ant. This vertex
is then set as the current vertex for the given ant, while the
ant itself is added to the time list with the time equal to the
current time extended by the length of the edge excerpted a
moment ago. In addition, the auxiliary variable skip is set to
true, which prevents the ant from passing along the last edge
of its path in the current iteration.

Depending on what mode a given ant is in, the algorithm
executes different operations. In the progressing mode (finding
the end vertex) in line 28 the function SelectNextArc(k,i) is
executed. The function aims at selecting the next edge for
the ant currently under consideration to follow. This function
calculates for each of the edges coming out of the vertex in
which the ant is currently located the probability for the ant
to pass along this edge (on the basis of the edge coefficient
¢ij)- The edge that has the highest probability is then chosen
as the next to be followed by the ant. In the case of these
probabilities being equivalent (the same), the edge is chosen
randomly. If, however, there are no edges coming out of the
considered vertex or all vertices are already in the current
path of the ant, NULL is returned. When this is the case,
the last edge in the ant’s path is retrieved and its vertices
are recorded and remembered. If the vertex from which the
edge leaves is the initial vertex, the function NextRun(G,k,s)
is executed. The function’s task is to clear all data gathered
during the ant’s route that has just been terminated and to
prepare the ant for the next route. After these operations have
been completed, the counter of the ant’s routes is extended,
while the initial vertex, which in turn is labelled as the one
already visited by the current ant, is set as the current vertex.
After all these operations are completed, the ant is added to the
time list with the current time for the ant to be ready to start
the path searching process anew. All the described operations
are necessary because an ant that would be returned to the
initial vertex, most probably would stay there until the end of
the execution of the algorithm, which, taking into account a
low number of ants, would decidedly worsen the quality of
generated solutions.

In a situation where the function SelectNextArc(k,i) returns
NULL and the ant does not have to be drawn back to the
initial vertex, the last edge in its path is removed. The length
of the ant’s path is diminished by the length of this edge. The
preceding vertex in this path (the vertex from which the edge
that has just been removed leaves) is set as a new vertex which
the ant visits at the moment, while the ant itself is added to the

time list with the time equal to the current time extended by the
length of the edge. The above strategy provides an opportunity
to avoid a situation when the ant stops in one place and cannot
move any further.

If the function SelectNextArc(k,i) returns the edge, the
vertex in which this edge terminates is set as the current vertex
for the ant. In addition, this vertex is labelled as one that has
been visited by this ant. This is, in fact, part of the mechanism
that prevents the creation of loops in the paths generated by
ants. Additionally, the vertex that has just been set is labelled
in the global table as "visited". The similar situation is with
the edge — it is labelled as "visited" in the global table. These
tables are then useful in the process of determining the edge
coefficients in the selection of the next vertex. The next step
is to add the selected edge to the ant’s path and to extend the
length of this path by the length of this edge. Then, the ant
is added to the time list, as usual with the time equal to the
current time extended by the length of the edge.

For an ant that is in the reverse mode (return to the initial
vertex), the same operations are executed. In the function Ad-
dToTau(k) (line 51), the last edge along the ant’s path (the
edge that has just been covered by the ant) is retrieved and
its vertices are remembered. At this point, an increase in the
value of pheromones by A7 ensues (set earlier for this ant),
and, should the need arise, its possible decrease to 7,4, if this
value has been exceeded. Next operations depend on whether
the vertex from which the edge that has just been removed
extends is the initial vertex.

If such a situation occurs, the function NextRun(G,k,s),
described earlier, is executed. As previously (in the previous
place of its application), the ant is added to the time list with
the current time. This is the second situation when the ant is
added to the time list without extending the current time by
the length of the edge. The reason for this is the fact that the
ant reaching the initial vertex immediately starts its next route.

In the case where the ant has not yet reached the initial
vertex and is in the reverse mode, the last edge in the path of
the ant (the edge that has just been covered by the ant) will be
removed from the ant’s path. Thanks to this, in the subsequent
steps, until the initial vertex is reached, it is the last edge that is
still along the path of a given ant that will always be retrieved.
Then, the next one to be retrieved from the path is the edge
that is currently the last one, while the vertex from which it
extends is set as the current vertex which the ant visits at the
moment. What is to be done now is just to add the ant to the
time list, with the time composed of the current time plus the
length of the currently last edge in the ant’s path.

The last operation to be performed in the algorithm is to
diminish the value of pheromones on all edges by the fraction
determined on the basis of the parameter p with the application
of the function Evaporate(). At the same time, the value of
pheromones is maintained at the minimum level 7,,;, [8].
In order to best map the duration of time (that we use to
additionally enhance short paths), this operation is executed
for the current time value and for all values lower than the
subsequent time value appearing in the time list. This simulates
evaporation of pheromones for each total time value.

IV. STUDY ON THE OPERATION OF THE ALGORITHM

In order to verify the operation of the algorithm and to
analyse its performance, a number of tests with different graphs
and values of individual parameters were performed. For a
presentation in this paper, the hand-constructed graph that is
presented in Figure 1 has been chosen. All the experiments
were conducted in a simulation environment prepared using
programming language C#. To obtain reliable results, each
test was performed 100 times. To diminish the influence of
the simulation environment, extreme results were rejected,
and then the average values for the remaining results were
calculated. The path to be found was between the first and the
last vertex.

Figure 1. The graph in which the study on the operation of the Shortest-
PathACO algorithm was performed

The values of the parameter o were experimentally deter-
mined as 1, while those of the parameter (5 as 0.5. It should not
be forgotten that the values of these parameters are extremely
important and in the case of another type of a graph or another
type of the shortest path problem, these values should be
verified. The parameters 7y, Tin and T,,q, were set to 0,
0 and 200, respectively, while the parameter iteration_limit
was set to 25000. It is worthwhile to emphasize again that
both the use of the second stage during the selection of next
edges, in which the edge coefficient is set to 0, and resetting
AT during the first three routes of ants was deactivated.

The experiments carried out in the study focused on three
aspects. The influence of the choice of the number of ants m
and of the parameter p on the quality of generated solutions
and the execution time of the algorithm were studied. Another
thing to be checked during the study was to evaluate how the
algorithm reaches its convergence.

A. Percentage of correct solutions

Figure 2 shows a chart presenting how the algorithm
behaves in the studied graph depending on a change in the
number of ants m for different values of the speed p at
which pheromones evaporate. With a small number of ants,
the algorithm is not capable of finding a correct solution at all.
This does not mean, however, that the solutions generated by
the algorithm are far from being close to the optimal solution.
In certain applications, however, these results can be sufficient,
and it is then this type of compromise between the demanded
resources and the accuracy of results is worth being considered.
When the number of ants is increased to 6, we observe an
increase in the percentage of the number of correct solutions
to about 75% depending on the parameter p. With 8 ants,
this value approaches 95%, whereas when the number of ants
is higher or equal to 12, the algorithm is virtually always
capable of finding optimum solutions. This illustrates well the

behaviour of the algorithm. With a small number of ants for the
graph with a far higher number of edges, the algorithm is not
capable of checking all paths, hence the shortest path cannot
be found. A gradual increase in the number of ants causes ants
to find the path more and more often until an increase in their
number introduces no substantial changes. For the graph from
Figure 1, m = 12 is the threshold that, in practice, guarantees
finding the optimal solution. An increase in the parameter p
is not followed by any noticeable changes. The difference in
the percentage number of correct solutions for a given value
m can be regarded as just a insignificant fluctuation. The chart
clearly shows that, no matter what the value of the parameter
p is, the quality of the generated solutions is approximately a
logarithmic function of the number of ants m.

2 100]
S
3 80
2
3
2 60
3
S 40
[
j=2)
8
c 20
S p=05
& R p=07 L
2 4 14 16
Number of ants m
Figure 2. Graph (chart) of the quality of generated solutions provided by

the ShortestPathACO algorithm for the graph from Figure 1 depending on the
parameters m and p

B. Duration of operation

The graph from Figure 3 illustrates the average operation
times in relation to the parameters m and p. Elongation of the
operation (execution) time of the algorithm in relation to the
increase in the number of ants is clearly visible. Two factors
contribute here. Firstly, a greater number of ants is followed by
a greater number of paths that will be eventually found, which
is undoubtedly time-consuming and increases the amount of
necessary computational work. On the other hand, however,
achieving convergence is far more difficult with a great number
of ants. The process of stabilization of the pheromone trail is
decidedly longer with a higher number of found paths because
the random nature of the operation of ants may cause, at
one point, that one of the ants can choose a path that is
completely different from all the others. Taking into account
earlier considerations on the issue of the quality of generated
solutions, a determination of a threshold that would guarantee
finding the optimal solution with the probability approaching
100% is extremely important because it prevents the algorithm
from being trapped in the application of parameters that make
its execution longer with the same results obtained in the
process.

The influence of the parameter p is not so unequivocal
though. By making a generalisation, it can be said that its
increase is equivalent to elongation of the execution time of
the algorithm, though there are some exceptions to this rule.
An increase in p above 0.1 causes a significant increase in the
operation time of the algorithm, but with a greater number of
ants, for the value equal to 0.7, a slight decrease as compared
to lower values is observable. The parameter p, responsible
for the evaporation rate of the pheromone trail, prolongs the

" p=0.001 — p=01------ p=05
200 p=0.01 P=0.3 e p=07 -
@
E
o 150 _
£
=
S T T s o —
3
£
w 50
o L=
2
Number of ants m
Figure 3. Execution time of the ShortestPathACO algorithm for the graph

from Figure 1 depending on the parameters m and p

operation time of the algorithm because it regularly decreases
the pheromone level on the edges, which translates into a de-
crease in the differences between them. One can say that a too
high increase in p causes a decrease in the influence of short
paths on ants. Based on the obtained results the conclusion is
that, even with high values of p, the optimal solution can be
found, though it takes decidedly much more time. Yet another
conclusion can be drawn - since the parameter p does not
influence significantly the quality of generated solutions, it
should not be exceedingly increased because this will solely
translate into elongation of the execution time of the algorithm.

C. Convergence achievement

The next issue under consideration is the way the algo-
rithm reaches convergence. Figure 4 shows the most frequent
behaviour of the algorithm. The paths found by all 16 ants are
arranged in the increasing order, since shorter paths are found
earlier. When the ants begin their next tour, two situations can
occur. It is either the ants achieve convergence to the best
solution found in the previous route, or they will continue
their search. If the pheromone trail stabilizes in the next tours
sufficiently for all the ants to choose one path, the algorithm
terminates its operation. There may be, of course, certain
departures to this, which is to be seen in the discussed figure.
One of the ants chose a different path than the rest, hence
the process of convergence achievement was prolonged. If,
however, the condition for the termination of the execution
of the algorithm was modified in such a way that it would
be required for 27’” or even ‘3 ants from the whole of the
ant colony to choose the same path, convergence would be
achieved earlier. Otherwise, ants will keep on finding different
paths (sometimes paths that have already been found earlier)
until the algorithm reaches the limit iteration_limit and will
terminate its operation without achieving convergence. Such a
situation is disadvantageous because of two reasons. Firstly, the
execution time of the algorithm will be prolonged considerably
and, secondly, the quality of thus obtained solution is ques-
tionable. If such an event occurs, this probably means that the
parameters of the algorithm have been inaccurately selected,
or that the algorithm is not capable of finding a solution for
this particular graph.

V. CONCLUSIONS

The method for solving the single-pair shortest path prob-
lem that applies the ShortestPathACO algorithm presented in
the paper is strongly related to the operations stemming from

T T T T
15 *
i m=16, p=0.001 —&—-
14
£ 13 i M
c | h
L 12 i
= i |
§ u sobeeed -k
10 [-seeeed =
9 |4 SSESVIIS TRIE SR PP DTS SPPDE SN
0 5 10 15 20 25 30 35 40 45
Number of paths
Figure 4. An exemplary process of achieving convergence in the Shortest-

PathACO algorithm for the graph from Fig. 1 for m = 16 and p = 0.1

the Ant Colony Optimization metaheuristics. In general, these
is no hundred per cent guarantee that the obtained solutions
will be optimal. There is, however, a possibility to efficiently
improve the quality of obtained paths through an appropriate
adjustment of the mode of operation and the selection of the
parameters of the algorithm depending on a specific context
of the task to be solved. The results of the study prove that
through the optimization of the use of the algorithm and the
establishment of thresholds appropriate for a given class of
problems, it is possible to guarantee to obtain optimal results
with the probability of nearly 100%. At the same time, it is
still possible to shorten the execution time of the algorithm
and to limit the number of operations performed in each of the
cycles. Moreover, with certain applications, a need for reaching
a compromise between the required computational resources
and the accuracy of results can be justified. When this is the
case, the shortest path between two nodes can be found at a
lesser expense, with the expected level of the quality of result
(the cost of a path) retained.

The considerations presented in the paper indicate that an
analysis and a presentation of the behaviour of the algorithm
in other types of graphs, such as multi-stage graphs, is the
appropriate area for further research. ShortestPathACO seems
to present a substantial potential for is application also in the
area of solving single-source shortest path problem.

REFERENCES

[1] M. Glabowski, B. Musznicki, P. Nowak, and P. Zwierzykowski, “Shortest
Path Problem Solving Based on Ant Colony Optimization Metaheuristic,”
International Journal of Image Processing & Communications, vol. 17,
no. 1-2, pp. 7-17, 2012.

[2] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms,
and Applications. Englewood Cliffs, N.J.: Prentice Hall, 1993.

[3] K. Stachowiak, J. Weissenberg, and P. Zwierzykowski, “Lagrangian
relaxation in the multicriterial routing,” in JEEE AFRICON, Livingstone,
Zambia, September 2011, pp. 1-6.

[4] M. Piechowiak, M. Stasiak, and P. Zwierzykowski, “The Application
of K—Shortest Path Algorithm in Multicast Routing,” Theoretical and
Applied Informatics, vol. 21, no. 2, pp. 69-82, 2009.

[5S] B. Musznicki, M. Tomczak, and P. Zwierzykowski, “Dijkstra-based Lo-
calized Multicast Routing in Wireless Sensor Networks,” in Proceedings
of International Symposium on Communication Systems, Networks and
Digital Signal Processing, Poznan, Poland, 18-20 July 2012.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
To Algorithms. Cambridge, Massachusetts: The MIT Press, 2009.

[71 M. Dorigo and T. Stiitzle, Ant Colony Optimization.
Massachusetts: The MIT Press, 2004.

[8] T. Stiitzle and H. H. Hoos, “MAX " MZIN ant system,” Future Gen-
eration Computer Systems, vol. 16, pp. 889-914, 2000.

Cambridge,

