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Abstract–We propose a teletraffic loss model of a single link 
that accommodates multirate service-classes of elastic calls. 
New calls arrive in the link according to a quasi-random 
process (calls are generated by a finite number of traffic 
sources), have elastic bandwidth requirements and an 
exponentially distributed service time. A new call is 
accepted in the system with its peak-bandwidth requirement 
if there is available link bandwidth. If not, the call retries 
one or more times (single and multi-retry loss model, 
respectively) to be accepted in the link with reduced 
bandwidth. If the available link bandwidth is lower than the 
call’s last bandwidth requirement, the call can still try to be 
connected in the link by compressing its last bandwidth 
requirement (down to a certain bandwidth) together with 
the bandwidth of all in-service calls. If, after compression, 
the call’s bandwidth exceeds the available link bandwidth, 
then the call is blocked and lost. The analysis of the 
proposed models is based on approximate but recursive 
formulas, whereby we determine time and call congestion 
probabilities and link utilization. The accuracy of the 
proposed models is verified by simulation and is found to be 
quite satisfactory. 

I. INTRODUCTION 

Elastic traffic of multirate service-classes grows 
rapidly in modern wired or wireless networks, a fact that 
necessitates the development of analytical tools for the 
call-level performance analysis of such networks. The 
term “elastic traffic” refers to in-service calls which have 
the ability to compress/expand their bandwidth and 
simultaneously increase/decrease their service time, 
during their lifetime in a system. Assuming that the call 
arrival process is Poisson then the calculation of various 
performance measures such as blocking probabilities and 
system’s utilization can be based on the Erlang Multirate 
Loss Model (EMLM) [1]-[2] which has been extensively 
used for the call-level analysis of wired (e.g., [3]-[8]), 
wireless (e.g., [9]-[13]) and optical networks (e.g., [14]-
[16]).  If the call arrival process is quasi-random, i.e., 
calls come from a finite number of users then the Engset 
Multirate Loss Model (EnMLM)  arises [17].  

In both the EMLM and the EnMLM, calls compete for 
the available link bandwidth according to the complete 
sharing policy (i.e., calls compete for all bandwidth 
resources) and have fixed bandwidth requirements. The 
latter means that in-service calls do not compress their 
bandwidth during their lifetime in the system. A new call 
is blocked and lost if its required bandwidth is not 
available. In both models the steady state probabilities 
have a Product Form Solution (PFS) which leads to an 

accurate calculation of call blocking probabilities (see 
e.g., [1], [2] and [17]). In [18], [19] the EMLM and the 
EnMLM, respectively, have been extended to include 
retrials. Blocked calls retry one or more times (Single-
Retry Model (SRM) and Multi-Retry Model (MRM), 
respectively) to be accepted in the link by requiring less 
bandwidth. A retry call is blocked and lost if the available 
link bandwidth is lower than the call’s last bandwidth 
requirement.  Note that the case of single retry in the 
EnMLM has also been considered in [20]. In [21], an 
approximate method has been proposed for both single 
and multi retries in the EnMLM that simplifies the 
calculation of blocking probabilities. In [22], the authors 
have extended [18] by incorporating the notion of elastic 
traffic. Instead of rejecting immediately a retry call, the 
link may accept this call by compressing its bandwidth 
and the bandwidth of all in-service calls. Elastic calls 
increase their service time so that the product bandwidth 
by service time remains constant. When a call with 
compressed bandwidth leaves the system, then the 
remaining in-service calls expand their bandwidth. A 
retry call is blocked and lost, if its compressed bandwidth 
should be less than a minimum proportion of its last 
bandwidth requirement.  In [23], [24], the authors have 
extended [22] to include adaptive traffic and the 
bandwidth reservation policy (in this policy a fraction of 
bandwidth is reserved to benefit calls of certain service-
classes), respectively. Adaptive calls compress or expand 
their bandwidth without altering their service time.  

In this paper, we extend [19], [21] to include elastic 
traffic. Due to the existence of retrials and bandwidth 
compression, the proposed elastic single-retry and multi-
retry loss models for quasi-random input do not have a 
PFS. However, we propose approximate but recursive 
formulas for the calculation of the link occupancy 
distribution and consequently time and call congestion 
probabilities as well as link utilization. Applications of 
the proposed models are in the area of wireless networks 
where calls may come from finite sources (the limited 
coverage of a cell justifies the case of a finite number of 
users) and their bandwidth can be compressed [25]-[27].            

This paper is organized as follows. In Section II, we 
propose the elastic SRM for quasi-random input and 
prove formulas for the calculation of the various 
performance measures. In Section III, we propose the 
corresponding elastic MRM for quasi-random input. In 
Section IV, we provide numerical results whereby the 
proposed models are compared to existing models and 
evaluated via simulation. We conclude in Section V.     



II. THE ELASTIC SINGLE RETRY LOSS MODEL FOR 

QUASI-RANDOM INPUT 

Consider a link of capacity C bandwidth units (b.u.) 
that accommodates elastic calls of K service-classes. 
Calls of service-class k (k=1,…,K) are generated by a 
finite source population Nk and have a peak-bandwidth 
requirement of bk b.u. If this peak-bandwidth is available, 
a service-class k call remains in the system for an 
exponentially distributed service-time with mean 1

k
 . 

Otherwise, the call is blocked and retries to be connected 
in the system with “retry parameters” 1( , )kr krb  where 

kr kb b and 1 1
kr k   . The mean call arrival rate of 

service-class k idle sources is ( )k k k kN n v   where kv  
is the arrival rate per idle source and nk is the number of 
in-service calls. This call arrival process is a quasi-
random process [28]. A Poisson process arises from a 
quasi-random process if kN  for k=1,…,K and the 
total offered traffic-load remains constant. Bandwidth 
compression is introduced in the model by assuming that 
the occupied link bandwidth j may exceed C up to a value 
of T b.u.  

To prove a recursive formula for the calculation of the 
link occupancy distribution, G(j), we consider an 
example of a link that accommodates two service-classes, 
with the following traffic parameters: 1

1 1 1 1( , , , )N v b for 

the 1st service-class and 1 1
2 2 2 2 2 2( , , , , , )r rN v b b   for the 

2nd service-class. Only calls of the 2nd service-class have 
“retry parameters” with 2 2rb b and 1 1

2 2r   . 

The description of call admission is based on a new 
service-class k call (k=1, 2) that arrives in the system 
when the occupied link bandwidth is j b.u. Then: 
i) If j + bk   C, the call is accepted in the system with bk 
b.u. for an exponentially distributed service time with 
mean 1

k
 . 

ii) If j + bk > C we consider the following subcases: 
a) If T   j + b1 > C, a 1st service-class call is accepted in 
the system by compressing b1, as well as the assigned 
bandwidth of all in-service calls. The compressed 
bandwidth of the 1st service-class call is given by 

' '
1 1 1( )b rb C j b  where '/r C j , '

1 1j j b b   nb . 
Similarly, the bandwidth of all in-service calls will be 
compressed (by the same factor r) and become 

' '( )k kb C j b  for k=1, 2. After compression has taken 
place, all calls share the C b.u. in proportion to their 
bandwidth requirement, while the link operates at its full 
capacity C. The minimum bandwidth that a 1st service-
class call can tolerate is '

1,min min 1 1( )b r b C T b  . 

b) If j+b1> T, the 1st service-class call is blocked and lost.  
c) If j + b2 > C, a 2nd service-class call is blocked and 
retries with b2r < b2. Now, we consider three cases: 1) If j 
+ b2r   C the retry call is accepted in the system with b2r. 
2) If j + b2r > T the call is blocked and lost. 3) If C < j + 
b2r   T the call is accepted in the system by compressing 
b2r together with the bandwidth of all in-service calls. 
The compressed bandwidth of the call is 

' '
2 2 2( )r r rb rb C j b  where '

2rj j b  . Similarly, the 
bandwidth of all in-service calls are compressed (by the 

same factor r) and become ' '( )k kb C j b  for k=1, 2. The 
minimum bandwidth that a 2nd service-class call tolerates 
is '

2 ,min 2( )r rb C T b . 

Although the steady state probabilities in the proposed 
model do not have a PFS, we assume that local balance 
exists between the adjacent states of the 1st service-class: 

1 1 1 1 1 1 1( 1) ( ) ( ) ( ) 1N n v P n P T     n n n nb         (1) 

where: 1 1 2 2 1 2 2 1 2 2( 1, , ), ( , , ), ( , , )r r rn n n n n n b b b  n n = b = , 

1 1n  , P(n) is the probability distribution of state n and   

1 1

1 ,

( ) ( ) ( ) ,

0 ,  

when C

x x when C T

otherwise    

 


  



nb

n n n nb                       (2) 

2

2 2 2
1

1 ,

1
( ) ( ) ( ) ,

0 ,

k k k r r r
k

when C

x n b x n b x when C T
C

otherwise     

 






      
 





nb   

n n n nb    (3) 

Note that φk(n) is a state dependent factor which 
describes: i) bandwidth compression and ii) the increase 
factor of service time of service-class k calls in state n. In 
other words, φk(n) has the same role with r but it may be 
different for each service-class. 

By multiplying both sides of (1) with b1, and based on 
(2) we have: 

1 1 1 1 1 1 1 1( 1) ( ) ( ) ( ) ( ) 1N n a b x P n b x P T     n n n n nb (4) 

where 1
1 1 1a v  is the offered traffic-load per idle source 

of 1st service-class.   
Based on the call admission mechanism described for 

2nd service-class calls the following local balance 
equations can be derived: 

a) 2 2 2 2 2 2 2( 1) ( ) ( ) ( ) 1N n v P n P C     n n n nb  (5) 

where: 2 1 2 2( , 1, )rn n n  n , 2 1n  and   

2 2

1 ,

( ) ( ) ( ) ,

0 ,  

when C

x x when C T

otherwise    

 


  



nb

n n n nb                       (6) 

By multiplying both sides of (5) with b2, and based on 
(6) we have: 

2 2 2 2 2 2 2 2( 1) ( ) ( ) ( ) ( ) 1N n a b x P n b x P C     n n n n nb (7) 

where: 1
2 2 2a v  and the values of x(n) are given by (3).    

b) 2 2 2 2 2 2 2 2

2 2

( 1) ( ) ( ) ( )r r r r r

r

N n n v P n P

C b b T

    
  

n n n

< nb
    (8) 

where: 2( )rP n  is the probability distribution of state 

2 1 2 2( , , 1)r rn n n  n  and 

 
2 2

1 ,

( ) ( ) ( ) ,

0 ,  
r r

when C

x x when C T

otherwise    

 


  



nb

n n n nb                    (9) 



By multiplying both sides of (8) with b2r, and based on 
(9) we have: 

2 2 2 2 2 2 2 2 2

2 2

( 1) ( ) ( ) ( ) ( )r r r r r r r

r

N n n a b x P n b x P

C b b T

    
  

n n n n

< nb
(10) 

Equations (4), (7) and (10) lead to a system of equations: 

1 1 1 1 1 2 2 2 2 2

1 1 1 2 2 2 2 2

( 1) ( ) ( ) ( 1) ( ) ( )

( ( ) ( )) ( ) , 1 r

N n a b x P N n a b x P

n b x n b x P C b b

 

 

    

     

n n n n

n n n nb
 (11) 

1 1 1 1 1 2 2 2 2 2

2 2 2 2 2 2

1 1 1 2 2 2 2 2 2

2 2

( 1) ( ) ( ) ( 1) ( ) ( )

( 1) ( ) ( )

( ( ) ( ) ( )) ( ) ,

r r r r

r r r

r

N n a b x P N n a b x P

N n n a b x P

n b x n b x n b x P

C b b C

 



  

    

   

  
  

n n n n

n n

n n n n

< nb

 (12) 

1 1 1 1 1

2 2 2 2 2 2

1 1 1 2 2 2

( 1) ( ) ( )

( 1) ( ) ( )

( ( ) ( )) ( ) ,

r r r r

r r r

N n a b x P

N n n a b x P

n b x n b x P C T





 

  

  

   

n n

n n

n n n nb

(13) 

By assuming that retry calls with b2r are negligible 
when 2 21 rC b b   nb and that the population of calls 
with b2 is negligible when C T nb , we can combine 
(11), (12) and (13) into the following equation: 

1 1 1 1 1 2 2 2 2 2 2

2 2 2 2 2 2 2

1 1 1 2 2 2 2 2 2

( 1) ( ) ( ) ( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( )

( ( ) ( ) ( )) ( ),

1

r r r r r

r r r

N n ab x P N n a b x P

N n n a b x P

nb x n b x n b x P

T





 



  

    

   

  
 

n n nb n n

nb n n

n n n n

nb

(14) 

where: 2 ( ) nb =1 for 1 nbC, otherwise 2 ( ) nb =0 

and 2 ( )r nb =1 for 2 2rC b b T  < nb , otherwise 

2 ( )r nb =0. 

Note that the approximations of (14) are similar to those 
introduced in the single-threshold model of [19].  

Since the values of x(n) = 1, when 1 j C  , it is 
proved in [20] that:  

1 1 1 1 1 2 2 2 2 2

2 2 2 2 2 2 2

( 1) ( ) ( 1) ( )

( 1) ( ) ( ) ( ),

1
r r r r r

N n a b G j b N n a b G j b

N n n a b j G j b jG j

j C


       
    

 

     (15) 

where: G(j) is the link occupancy distribution, 2 ( )r j =1 

for 2 2rC b b j  < , otherwise 2 ( )r j =0. 

When C j T  , we have 2 ( )j =0 and due to (3), we 
may write (14) as follows: 

1 1 1 1 1 2 2 2 2 2 2 2

1 1 1 2 2 2 2 2 2

( ) ( 1) ( ) ( 1) ( ) ( )

( ( ) ( ) ( )) ( )

r r r r r

r r r

x N n abP N n n a b P

nbx n b x n b x P

 

  

       
  

n n nb n

n n n n
(16) 

or 

1 1 1 1 1 2 2 2 2 2 2 2( 1) ( ) ( 1) ( ) ( )

( )

r r r r rN n a b P N n n a b P

CP

      



n nb n

n
 (17) 

Summing over the set of states j n nb , where 

 : 0 T   n nb , we have: 

 

 

 

1 1 1 1 1

2 2 2 2 2 2 2

( 1) ( )

( 1) ( ) ( )

( )

j

r r r r r
j

j

N n a b P

N n n a b P

C P













 

   









n nb

n nb

n nb

n

nb n

n

                      (18) 

or 

1 1 1 1 1 2 2 2 2 2 2 2( 1) ( ) ( 1) ( ) ( )

( )

r r r r rN n abG j b N n n j a b G j b

CG j

       


(19) 

since by definition: ( ) ( )
j

G j P


 
n

n . 

The combination of (15) and (19) gives the following 
recursive formula for the G(j)’s calculation when K=2 
and only calls of the 2nd service-class retry: 

1 1 1 1 1

2 2 2 2 2 2

2 2 2 2 2 2 2

min( , ) ( ) ( 1) ( )

( 1) ( ) ( )

( 1) ( ) ( ),

1
r r r r r

j C G j N n a b G j b

N n a b j G j b

N n n a b j G j b

j T




    
   
   

 

                (20) 

where: 2 ( )j =1 for 1 jC, otherwise 2 ( )j =0 and 

2 ( )r j =1 for 2 2rC b b j T  < , otherwise 2 ( )r j =0. 

In the general case of K different service-classes, 
where all calls may retry, (20) takes the form: 

1

1

1 0

1
( 1) ( ) ( )

min( , )

1
( ) ( 1) ( ) ( )

min( , )

1,...,

0

K

k k k k k k
k

K

k k kr kr kr kr kr
k

for j

N n a b j G j b
j C

G j N n n a b j G j b
j C

for j T

otherwise











   

    






(21) 

where: 

1
kr k kra v  ,

1 1 0

( ) 1 1 0

0

kr

k kr

for j C and b

j for j T and b

otherwise


  

   



, 

1 0
( )

0
k kr kr

kr

for C b b j T and b
j

otherwise


    
 


. 

The calculation of G(j)’s in (21) requires the values 
of nk and nkr which are unknown. In other finite multirate 
loss models (e.g., [6], [17], [19]) there exist methods for 
the determination of these values through an equivalent 
stochastic system, with the same traffic description 
parameters and set of states. However, the state space 
determination of the equivalent system is complex, 
especially for large systems that serve many service-
classes. Thus, we avoid such methods and approximate nk 
and nkr in state j, nk(j), nkr(j), as the mean number of 
service-class k calls in state j, yk(j) and ykr(j), respectively, 
when Poisson arrivals are considered. Such 
approximations are common in the literature (e.g., [21], 
[29], [30]).  In that case, (21) takes the form: 



1

1

1 0

1
[ ( ( )) ( ) ( )

min( , )

( ) ( ( ( ) ( )) ( ) ( )]

1,...,

0

K

k k k k k k k
k

K

k k kr kr kr kr kr kr kr
k

for j

N y j b a b j G j b
j C

G j N y j b y j b a b j G j b

for j T

otherwise











   

     






(22) 

where the values of yk(j) and ykr(j) are given by: 

,inf inf inf( ) ( ) ( ) ( )k k k ky j a j G j b G j                           (23) 

,inf inf inf( ) ( ) ( ) ( )kr kr kr kry j a j G j b G j                       (24) 

where: ,infka and Ginf(j) are the offered traffic-load (in erl) 

of service-class k and the link occupancy distribution, 
respectively, of the corresponding infinite model [22]:  

,inf inf
1

inf ,inf inf
1

1 0

1
( ) ( )

min( , )

1
( ) ( ) ( )

min( , )

1,...,

0

K

k k k k
k

K

kr kr kr kr
k

for j

a b j G j b
j C

G j a b j G j b
j C

for j T

otherwise











 

 






             (25) 

Having determined G(j)’s according to (22), we 
calculate the following performance measures: 
1) The Time Congestion (TC) probabilities of service-
class k, denoted as 

kbP , which is the probability that at 

least T-bkr+1 b.u. are occupied: 

1

1

( )
k

kr

T
-

b
j T b

P G G j
  

                                                    (26) 

where: G = 
0

( )
T

j

G j

  is a normalization constant. 

2) The Call Congestion (CC) probabilities of service-
class k, denoted as 

kbC , which is the probability that a 

service-class k call is blocked with bkr: 

1

1

( )
k

kr

T
-

b
j T b

C G G j
  

                                                     (27) 

where G(j)’s are determined for a system with Nk - 1 
traffic sources.   
3) The link utilization, denoted as U: 





T

j

-
C

j

- jGCGjGjGU
11

)()(
C

11                       (28) 

III. THE ELASTIC MULTI RETRY LOSS MODEL FOR 

QUASI-RANDOM INPUT 

Similar to the single-retry model, the multi-retry model 
does not have a PFS and therefore the G(j)’s calculation 
is based on an approximate but recursive formula. In the 
multi-retry model, a blocked service-class k call retries 
s(k) times with parameters: 1( , )

s skr krb  for s=1,…,s(k) 

where 
( )s kkrb <…<

1krb <bk and 
( ) 1

1 1 1...
s kkr kr k       . The 

determination of G(j)’s is based on (29) whose proof is 
similar to that of (21) and therefore is not presented: 

1 ( )

1
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1
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( ) ( ( ... ) 1) ( ) ( )]
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s k s s s s

K

k k k k k k
k

s kK

k k kr kr kr kr kr kr
k s

for j

N n a b j G j b
j C

G j N n n n a b j G j b

for j T

otherwise







 



   

      






(29) 

where: 1

S Skr k kra v  , 

1 1 0

( ) 1 1 0

0

s

s

kr

k kr

for j C and b

j for j T and b

otherwise



  


   



, 

1

1

1 ( )

( ) 1 ( )

0

s s

s s s

kr kr

kr kr kr

for C b b j C if s s k

j for C b b j T if s s k

otherwise






    


     



. 

As in the SRM, we approximate nk(j) and 
skrn (j) for 

s=1,…,s(k) with the corresponding values of the infinite 
model [22].  In that case, (29) takes the form: 

1

( )

1 1

1 0

1
[ ( ( )) ( ) ( )

min( , )

( ) ( ( )) ( ) ( )]

1,...,

0

S s s s s

K

k k k k k k k
k

s kK

k k kr kr kr kr kr
k s

for j

N y j b a b j G j b
j C

G j N Y j b a b j G j b

for j T

otherwise







 



   

   






 (30) 

where: 

1 ( )
( ) ( ) ( ) ... ( )

s s s s k sk kr k kr kr kr kr krY j b y j b y j b y j b       

and the values of yk (j) and ( )
skry j are given by: 

,inf inf inf( ) ( ) ( ) ( )k k k ky j a j G j b G j                           (31) 

,inf inf inf( ) ( ) ( ) ( )
s s skr kr kr kry j a j G j b G j                      (32) 

where Ginf(j) refers to the link occupancy distribution of 
the corresponding infinite model [22]:  

,inf inf
1

( )

inf ,inf inf
1 1

1 0

1
( ) ( )

min( , )

1
( ) ( ) ( )

min( , )

1,...,

0

s s s s
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G j a b j G j b
j C

for j T

otherwise







 



 

 






        (33) 

A similar procedure in the case of retrials where calls 
have fixed bandwidth requirements (bandwidth 
compression is not permitted) has been proposed in [21].   

Having determined G(j)’s according to (30), we 
calculate TC and CC probabilities of service-class k, 
according to (26) and (27), respectively, by replacing bkr 
with

( )s kkrb . Link utilization is calculated by (28) where the 

values of G(j)’s are given by (30). 



IV.  NUMERICAL EXAMPLES - EVALUATION 

We consider an application example and compare the 
analytical TC probabilities with those obtained by 
simulation. The latter is based on SIMSCRIPT III [31]. 
For comparison, we show the corresponding analytical 
results assuming Poisson arrivals [22]. Simulation results 
are mean values of 7 runs with 95% confidence interval. 
The resultant reliability ranges of the simulation 
measurements are very small and, therefore, we present 
only mean values.  

Consider a link of capacity C=80 b.u. that 
accommodates three service-classes of elastic calls. All 
calls arrive in the system according to a quasi-random 
process. The traffic characteristics of each service-class 
are the following: 
1st service-class: N1=100, v1 = 0.20, b1 = 1 b.u. 
2nd service-class: N2=100, v2 = 0.06, b2 = 2 b.u. 
3rd service-class: N3=100, v3 = 0.02, b3 = 6 b.u. 

The call holding time is exponentially distributed with 
mean value 1 1 1

1 2 3 1       . Calls of the 3rd service-
class may retry two times with reduced bandwidth 
requirement: 

13r
b = 5 b.u. and 

23r
b = 4 b.u. and increased 

service time so that 
1 1 2 23 3 3 3 3 3r r r ra b a b a b  , where 

1
k k ka v  , k=1,2,3. The corresponding Poisson traffic-

loads are: 1,inf 2,inf 3,inf20, 6, 2a a a   erl. In the x-axis 

of all figures, we assume that v3 remains constant while 
v1, v2 increase in steps of 0.01 and 0.005, respectively. 
The last value of v1 = 0.28 while that of v2 = 0.10. The 
corresponding last values of the Poisson traffic-loads are: 

1,inf 2,inf 3,inf28, 10, 2a a a   erl.  

Two different values of T are considered: a) T = C = 80 
b.u. where no bandwidth compression takes place. In that 
case, the proposed model gives exactly the same results 
with the model of [21], b) T=82 b.u. where bandwidth 
compression takes place and rmin = C/T=80/82. 

In Fig. 1, we present the analytical and simulation TC 
probabilities results of the 1st service-class for all values 
of T. Similar results are presented in Fig. 2, for the 2nd 
service-class and in Fig. 3 for the 3rd service-class (TC 
probabilities of calls with

23rb ). All figures presented 

herein show that: i) the model’s accuracy is absolutely 
satisfactory compared to simulation, ii) the increase of T 
above C results in the decrease of TC probabilities due to 
the existence of the compression mechanism and iii) the 
results obtained by the infinite model [22] fail to 
approximate the results of the proposed finite model.     

 

V.  CONCLUSION 

We propose multirate retry loss models that support 
elastic traffic assuming that calls arrive in the link 
according to a quasi-random process and have an 
exponentially distributed service time. Blocked calls have 
the ability to retry to be connected in the system one or 
more times with reduced bandwidth and increased service 
time requirements. Furthermore, if a retry call is blocked 
with its last bandwidth requirement, it can still be 
accepted in the system by compressing its bandwidth 
together with the bandwidth of all in-service calls. The 
proposed models do not have a PFS. However, we 

propose approximate but recursive formulas for the 
calculation of the link occupancy distribution and 
consequently time and call congestion probabilities as 
well as link utilization. Simulation results verify the 
analytical results.  

 

 
Figure 1. TC probabilities – 1st service-class. 

 

 Figure 2. TC probabilities – 2nd service-class. 

 
 

 



 
Figure 3. TC probabilities – 3rd service-class. 
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