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Abstract– Since navigation rules (NRs) only roughly 

define how to avoid collisions between two ships, the actual 
navigators must make decisions about the direction and 
timing for avoidance based on their experience. Therefore, 
the decisions of the unskilled navigators tend to be 
ambiguous. Against this background, we have discussed 
course efficiency and safety using a multi-agent 
reinforcement learning system (MARLS) to search ships’ 
courses. However, we have not discussed avoidance timing. 
In this paper, we propose a method to identify avoidance 
starting points using our MARLS. Through numerical 
experiments, we have confirmed that our proposed 
MARLS can find efficient courses and converge the 
avoidance starting points corresponding to each avoidance 
to a small area. 
 
1. Introduction 
 

Recently, many researches on unmanned autonomous 
ships have been conducted and their purpose is to build a 
versatile automatic collision avoidance system using deep 
reinforcement learning [1], [2]. 
 On the other hand, we have developed multi-agent 
reinforcement learning system (MARLS) to search ships’ 
courses [3], [4] and have considered how to use it as marine 
traffic assessment tools [5], [6]. This is because it remains 
important to pre-select safe and efficient courses for 
complex collision situations where even actual navigators 
are at a loss to make a decision, and to get useful knowledge 
from the process of the course selection.  

The reason for the navigator’s confusion is due to the 
lack of clarity in the collision avoidance method prescribed 
by navigation rules (NRs) [7]. For example, NRs order that 
the ship which has the other ship on the right side must 
change the course to the right in the collision situation 
called crossing situation. However, NRs do not request the 
direction and timing for the avoidance. Therefore, actual 
navigators must make appropriate decisions based on their 
experience. Against this background, researches on 

collision avoidance systems have long been conducted. 
Recent researches on unmanned ships are also essentially 
the construction of collision avoidance systems. However, 
these researches do not aim to get useful knowledge 
through the identification of avoidance starting points. 

In this paper, we propose a method to identify avoidance 
starting points using our MARLS. Through numerical 
experiments, we have confirmed that our proposed 
MARLS can find efficient courses and converge the 
avoidance starting points corresponding to each avoidance 
to a small area. Also, we mention the possibility of getting 
useful knowledge from the courses and avoidance starting 
points obtained in the test problem. 
 
2. MARLS to Search Ships’ Courses 
 
2.1. Basic MARLS for Multi-Ship Course Problems 
 

Fig.1 is a model of ship maneuvering motion. O is the 
center in turning the ship’s head and shows the ship’s 
position (i.e., O=(x, y)). φ is the heading angle. LS is the 
ship’s length. v is the velocity and its size is V. The motion 
equation is given by TK model as follows: 

, sin , cos ,T K x V y Vφ φ δ φ φ+ = = = 

             (1) 
where δ is the rudder angle. T and K are the maneuvering 
performance parameters which are given by K=K0/(LS/V) 
and T=T0(LS/V). Each ship has individual K0 and T0. Also, 
since actual navigators tend to avoid collisions by only 
changing the direction before changing the speed in 
congested sea area, we fix V at the standard value. 

Fig.2 is a model of sea area. Fig.2(a) is a common sea 
area which all ships share and it defines the start (S) and the 
goal (G) for each ship in the navigable area (white). Also, 
it defines the unnavigable area (gray) which represents 
obstacles. Fig.2(b) is an individual sea area which each ship 
occupies and it is based on the common sea area. It consists 
of grids whose side length is fixed at LG (=2LS in this paper). 
Each grid is numbered for Q-learning (QL). There are 4 
kinds of grids: start one (S), goal one (G), navigable one 
(white), and unnavigable one (gray). Each ship is permitted 
to move every grid except for unnavigable ones. Therefore, 
we judge that MARLS has obtained a solution if all the 
ships arrive at their goal grids without entering any 
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unnavigable grids in their individual sea area and there is 
no collision between ships in the common sea area. 

Next, we explain the basis of our basic MARLS [3], [4] 
which uses QL (hereafter B-MARLS). There are some 
assumptions to solve multi-ship course problems by 
MARLS. A navigator is regarded as an agent. The 
perceptual input of agent k consists of its own ship’s 
information Ik=(xk, yk, φk, kφ ) and other ships’ information 
Dk. If there are other ships which the ship k needs to avoid 
according to navigation rules (NRs), Dk is generated based 
on the directions where they exist. The state is defined by 
Ik and Dk. The action is defined by the rudder angle δk. If 
the ship k is in the goal grid Gk, unnavigable ones, and the 
others, the agent k receives rA=1, rF=−1, and zero as the 
reward, respectively. Also, when the ship k collides with 
another ship, the agent k receives rF. The judgment of the 
collision is executed as follows. When the ship k must avoid 
the collision with the ship j according to NRs, the collision 
area (C-area) is placed around the ship j. If the ship k enters 
the C-area around the ship j, then only the ship k receives a 
penalty (i.e., rF). When all the agents reach their terminal 
states (i.e., receive rA or rF), the present episode is finished 
and the next one is started. Therefore, the agent k optimizes 
Q-value by iterating episodes until the end condition is 
satisfied. The end condition of a learning trial is based on 
the task achievement rate detailed in Sect.4. Also, the task 
achievement means that all the ships arrive at their goals in 
an episode. Moreover, B-MARLS uses the limited action 
selections (LASs) based on NRs and the goal orientation 
(GO) to keep NRs, improve the learning efficiency, and 
suppress the influence of the concurrent learning problem. 
These LASs are detailed in Refs. [3], [4]. 
 
 
 
 
 
 
 
 
 
 

Fig.1 A model of ship maneuvering motion. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 A model of sea area. 

2.2. TC-MARLS 
 

To further improve the learning efficiency of B-MARLS, 
we have proposed MARLS with target courses instead of 
rudder angles as actions (hereafter TC-MARLS) [6]. TC-
MARLS is based on B-MARLS except for the definition of 
actions. The target courses are defined based on actual 
courses in congested sea area and correspond to 
maintaining the course, avoiding collision, suppressing the 
amount of avoidance, and recovering the course. Also, they 
are basically designed to satisfy NRs or GO. 

TC-MARLS is constructed to keep NRs for three typical 
collision situations: head-on-situation, crossing situation, 
and overtaking shown in Fig.3. As an example, this section 
describes the definition of the target courses for the 
crossing situation. 

Fig.3(b) shows that if ships k and j continue to move 
straight ahead, the crossing situation will eventually occur. 
According to NRs, the ship k must avoid the collision with 
the ship j by changing the course to the right at arbitrary 
timing. To satisfy this request, the target courses A to D are 
prepared for the ship k as shown in Fig.4(a). Since the ship 
cannot change the course in a moment, the starting point of 
each target course is d [m] away from the present position 
of the ship. The course A means maintaining the present 
course toward the goal (Gk) and the courses B to D 
correspond to avoiding collision. The courses B to D are set 
based on the course A. 

However, if the target course for collision avoidance is 
continuously taken, the ship k may generate large 
avoidance unnecessarily. To overcome this problem, the 
target courses A to D are prepared for the ship k as shown 
in Fig.4(b). The course A means maintaining the present 
course and the courses B to D correspond to suppressing 
the amount of avoidance. Although the courses B and C are 
set based on the course A, the course D is set parallel to the 
straight line connecting the start (Sk) and Gk. 

Moreover, when the ship k achieves collision avoidance 
with the ship j, the ship k is allowed to recover the course. 
Therefore, the target courses A and B are prepared for the 
ship k as shown in Fig.4(c). The course A means 
maintaining the present course and the course B 
corresponds to recovering the course toward Gk. 

As mentioned above, TC-MARLS switches the set of 
target courses according to the situation. 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 Typical collision situations and NRs. 
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Fig.4 Definition of target courses for crossing situation. 
 
3. Detecting Method of Avoidance Starting Points 
 

As mentioned in Sect.2.2, the actions of TC-MARLS 
include target courses corresponding to collision avoidance. 
Therefore, the moment when the agent selects a target 
course for collision avoidance corresponds to the avoidance 
starting point. However, since we want to obtain some 
useful knowledge by converging the avoidance starting 
points to a small area, it is necessary to set conditions that 
the avoidance starting points must satisfy. 

Therefore, we propose a method for detecting the 
avoidance starting point under the condition that the current 
course is maintained as long as possible while ensuring 
safety. The degree of the safety can be controlled by the 
shape of the collision area (C-area) mentioned in Sect.2.1. 
Hereafter, the detected point is considered to be the 
avoidance start limit point. 

The basic idea for detecting the avoidance start limit 
point is as follows. We assume that each ship tracks a goal-
oriented course at the start of the episode and at the time 
when it chooses to recover the course. In this situation, even 
if NRs requires the ship k to avoid the ship j, TC-MARLS 
forces the ship k to continue tracking the goal-oriented 
course and induces a collision. However, if the collisions 
between ships k and j are repeated, the range within which 
the ship k must track the goal-oriented course is gradually 
reduced. 

Based on the above basic ideas, we implement the 
following method for detecting the avoidance start limit 
point. First, we list the assumptions. 
− Each ship tracks a goal-oriented course at the start of 

the episode and at the time when it chooses to recover 
the course. 

− The target course for collision avoidance can only be 
selected for switching from a goal-oriented course. 

− Ckj∈[0, 1] is given as the permission criterion for the 
ship k to start avoiding the ship j according to NRs; 
the larger Ckj, the earlier the ship k can avoid the ship 
j. At the start of learning, Ckj is set to zero. 

Next, the procedure for detecting the avoidance start 
limit point is shown below. 
(1) The relative distance between the ships k and j at the 

moment when it is judged that the ship k, which is 

tracking the goal-oriented course, should avoid the 
ship j according to NRs is stored as Dkj. On the other 
hand, when it is judged that the ship k does not need 
to avoid the ship j, Dkj = ∞. 

(2) For the ship j satisfying Dkj≠∞, the relative distance 
dkj(t) between the ships k and j at time t is calculated. 
If there exists the ship j that satisfies Eq.(2), then the 
ship k can select either a goal-oriented course or a 
target course for collision avoidance. Otherwise, the 
ship k maintains the goal-oriented course. 

( ) /kj kj kjd t D C≤ .     (2) 
(3) Each time the ship k collides with the ship j, Ckj is 

increased by Eq.(3), where ∆ is a small positive 
number and Ckj = 1 if Ckj exceeds one. 

kj kjC C← +∆ .      (3) 
(4) The steps (1) to (3) are repeated while executing the 

current learning trial. The avoidance start limit points 
are detected by checking when the target course for 
collision avoidance is selected in the obtained courses. 

 
4. Numerical Experiments 
 

Fig.5 is a test problem including six identical ships in 
42LS×42LS sea area. For simplification of discussion, each 
agent has common parameters except for the start and the 
goal positions. The important parameters in this paper are 
as follows. The action of B-MARLS is defined by the 
rudder angle δ∈{0, 5, −5, 10, −10} [deg.]. The action of 
TC-MARLS is defined by the target course, as shown in 
Fig.4. The rudder angle is determined by tracking control 
[6] to track the selected target course. The range of the 
rudder angle is given by [−10, 10] [deg.]. As mentioned in 
Sect.3, Ckj is the criterion for allowing the ship k to avoid 
the ship j. The parameter to adjust Ckj is ∆=2×10−4. The 
other parameters are set according to Refs. [3], [6]. The 
maximum number of episodes in each learning trial is 
100000. The end condition is as follows: a learning trial is 
successful if the task achievement rate SR is over 80% for 
20000 successive episodes. SR is calculated using recent 
5000 episodes. The number of learning trials is 30. After a 
learning trial is successful, MARLS calculates a set of 
courses without learning and randomness. We call it an 
obtained course. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 Test problem. 
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Table 1 Learning and course efficiencies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6 Examples of obtained courses in TMori and TMasp. 
 

Table 1 shows the learning and course efficiencies in B-
MARLS (BM), the original TC-MARLS (TMori), and TC-
MARLS for detecting avoidance starting point (TMasp). 
NSLT is the number of successful learning trials. NEPS is the 
average number of episodes executed in successful trials. 
NS is the average number of states used actually. NGET is the 
number of obtained courses without collisions. Lave, Lmin, 
and Lmax are the average, minimum, and maximum lengths 
of obtained courses, respectively. 

From Table 1, we can find following. As mentioned in 
Sect.2.2, we have proposed TMori to improve the learning 
efficiency of BM. Comparing NEPS of BM and TMori, we 
can reconfirm the above purpose is achieved. Although NS 
of TMasp is much smaller than that of TMori, both of them 
have almost the same NEPS. This means that TMasp pay a lot 
of calculation cost for detecting the avoidance starting 
points. Improving the learning efficiency of TMasp is one of 
our future works. From Lave, Lmin, and Lmax, it can be seen 
that the course efficiency improves in the order of BM, 
TMori, and TMasp. The reason why TMori is better than BM 
is that TMori can suppress large avoidance and meanders 
observed in BM, and this fact has already been confirmed 
in Ref.[6].  On the other hand, the reason why TMasp has 
better course efficiency than TMori is revealed by 
comparing their obtained courses. Fig.6 shows examples of 
the obtained courses in TMori and TMasp. Square marks 
show the position of each ship every 60 seconds. Triangular 
marks shows the avoidance starting points detected by 
TMasp during the 30 learning trials. Fig.6(a) shows that 
TMori gets the obtained course which keeps NRs. Fig.6(b) 
shows that TMasp gets the obtained course which ignores 
NRs if the safety is ensured. Therefore, it can be confirmed 
that TMasp has better course efficiency than TMori as a result 
of suppressing the amount of avoidance by ignoring NRs. 

Next, we consider the avoidance starting points detected 
by TMasp. From Fig.6(b), we can find following. There are 
no triangular marks on the course of ship 1. This means that 
ship 1 does not need to avoid any ships. In the case of ships 
3 and 6, the convergence area of the avoidance starting 

points corresponding to each avoidance is quite small. 
However, the convergence areas of ships 2, 4, and 5 are not 
as small as those of ships 3 and 6. Observing ships 2, 4, and 
5 during the learning process, we can confirm that they 
repeatedly make trial-and-error attempts to avoid collisions. 
In other words, it is considered that the convergence area 
has expanded due to the complexity of the collision 
situation. These facts suggest the possibility that the 
complexity of the collision situation may be quantified 
from the shape and size of the convergence area, which is 
expected to provide useful knowledge for actual navigators. 
 
5. Conclusions 
 

We have proposed a method to identify avoidance 
starting points using TC-MARLS. We have confirmed that 
proposed MARLS can find efficient courses and converge 
the avoidance starting points corresponding to each 
avoidance to a small area. Also, we have found the 
possibility that the shape and size of the convergence area 
provide useful knowledge for actual navigators. In the 
future, we will investigate the relationship between the 
degree of the safety and the avoidance starting points in 
detail. Moreover, we will quantify the complexity of the 
collision situation from the convergence area. 
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