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Abstract—A method is proposed to detect the least
shaken point on a moving object to which an inertial sen-
sor is attached by analyzing time series of acceleration and
angular velocity measured by the sensor. The calculation
procedure is derived and it is applied to the time series ob-
tained from an experiment using a pendulum to estimate
the position of the least shaken point. The accuracy of the
method is evaluated by comparing it with data obtained by
a different method using an image analysis.

1. Introduction

As the recent development of multi-function loggers it
becomes easier to obtain multiple data on moving object in
various situations, especially in field works. In particular,
inertial sensors consisting of accelerometer and gyroscope
provide detailed kinematic information that enables us to
analyze various behaviors of animals including human[1,
2, 3].

Kinematic characteristics, such as the center of mass, the
instantaneous center of rotation, and the zero moment point
are important concepts to grasp and/or control the motion
of moving body[4, 5]. Estimating such characteristics from
the time series of measured acceleration and angular ve-
locity is a kind of an inverse problem. Among a variety
of such kinematic characteristics, this study focuses on a
point of the smallest fluctuation of acceleration, i.e., the
least shaken point on the object. We propose a method to
detect this point by combining the time series of acceler-
ation and angular velocity for a given time interval. The
identification of this point is expected to provide an insight
into the mechanism of motion. Moreover, it also be a can-
didate location for other sensors, such as optical or acoustic
ones, or for a good riding position of a vehicle.

In §2, the main procedure is explained after some def-
initions and assumptions. In §3, it is applied for real ex-
perimental data of a swinging pendulum. Final section is
devoted to the discussion.
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2. Least Acceleration Fluctuation Point

The main question is how to find the least shaken point
in the object in motion. For example, consider a swinging
physical pendulum to which an inertial sensor is attached.
We only know the time series of several kinematic quan-
tities such as acceleration and angular velocity. Then how
do we estimate the position of the fulcrum of the pendulum
by analyzing the time series of these quantities ? In order
to answer this question, we calculate the amplitude of ac-
celeration fluctuation at an arbitrary point on the object and
find the point where it is minimized.

An inertial sensor S consisting of accelerometer and
gyroscope is fixed to a moving object. S measures the
acceleration A⃗(t) and the angular velocity G⃗(t) , both of
which consist of three components Aξ(t), Aη(t), Aζ(t) and
Gξ(t),Gη(t),Gζ(t). Here, ξ, η and ζ are the three axes fixed
to S. The sampling frequency is expressed as 1/δt.

Figure 1: The laboratory coordinates system and the sen-
sor coordinates system in the plane of the object motion,
which includes the gravitational vector. O is the origin of
LC fixed to somewhere in the laboratory system. S is the
sensor and the origin of SC system. P is a point whose co-
ordinates in the SC system are constant in time. ψ (> 0 in
this figure) is the angle of SC axes based on the LC axes.

First, we assume that the object motion is limited in a
two-dimensional space spanned by the vertical and hori-
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zontal axes. In other words, we focus only on the three
quantities Aξ, Aζ and Gη. And we define a laboratory co-
ordinates system (LC), in which X,Y and Z, where Z axis
points the vertically downward and the object moves in the
XZ plane. We refer the origin of LC system as O. The po-
sitional coordinates of S in LC are (XS ,YS ,ZS ) with YS =

const as shown in Fig. 1.
Next, we consider the sensor coordinates system (SC),

ξ, η and ζ which is fixed to the sensor. The origin of SC is
taken to be the sensor itself. For the simplicity, we assume
that the η axis and the Y axis are always parallel. The angle
of SC based on LC, ψ, is the elevation angle. If ψ = 0,
(Aξ, Aη, Aζ) = (0, 0,−g) where g > 0 is the gravitational
acceleration. Gη denotes the angular velocity component
around η axis, therefore Gη = ψ̇ holds.

Now we focus on an arbitrary point P in the XZ plane
on the object whose positional coordinates are (ξP, ζP) in
SC and (XP,ZP) in LC. We also assume that ξP and ζP are
constants in time. Then the equality −−→OP = −−→OS + −−→S P is
written as (

XP

ZP

)
=

(
XS

ZS

)
+ R(−ψ)

(
ξP

ζP

)
, (1)

where R(ψ) is a two-dimensional rotation matrix,

R(ψ) ≡
(

cosψ − sinψ
sinψ cosψ

)
. (2)

By considering that ξP and ζP are constant in time, a fol-
lowing equation is obtained by differentiating Eq.(1) twice:(

ẌP

Z̈P

)
=

(
ẌS

Z̈S

)
+

(
Ψ11 Ψ12
Ψ21 Ψ22

) (
ξP

ζP

)
, (3)

where Ψi j is given by

Ψ11 = Ψ22 = −ψ̈ sinψ − ψ̇2 cosψ,
Ψ12 = −Ψ21 = ψ̈ cosψ − ψ̇2 sinψ. (4)

Equation (3) gives a relation between the acceleration
at the sensor t(ẌS , Z̈S ) and that at the arbitrary point P
t(ẌP, Z̈P). Because the measured acceleration (Aξ, Aζ) is
with respect to SC, the acceleration of S in LC is given by
following equation:(

ẌS

Z̈S

)
= R(−ψ)

(
Aξ

Aζ

)
+

(
0
g

)
. (5)

Now we consider a time series of three quantities Aξ(t),
Aζ(t) and ψ(t) of a certain time interval t0 < t < t0 + τ.
Where is the least shaken point of the object during this
interval? In order to specify this point we calculate the
amplitude of acceleration fluctuation during the interval at
P. The sum of the statistical variance of ẌP and Z̈P are given
by

b(ξP, ζP) ≡ ⟨(ẌP − ⟨ẌP⟩)2⟩ + ⟨(Z̈P − ⟨Z̈P⟩)2⟩, (6)

where ⟨ ⟩ denotes a temporal average during τ, i.e., ⟨Q⟩ ≡
1
τ

∫ t0+τ

t0
Qdt or its discretized version. The lower the value

b, the smaller the amplitude of the acceleration fluctuation
at that point. And if b(ξP, ζP) = 0, the acceleration at P
does not fluctuate in time during τ.

By substituting Eqs. (3) and (4) into (6), and we omit the
subscript P for the simplicity, tedious calculations[6] show
that

b(ξ, ζ) = B2(ξ2 + ζ2) + 2B1ξξ + 2B1ζζ + B0, (7)

with

B2 = ⟨(ψ̈)2 + (ψ̇)4⟩ − ⟨Ψ11⟩2 − ⟨Ψ21⟩2
B1ξ = ⟨Ψ11ẌS + Ψ21Z̈S ⟩ − ⟨Ψ11⟩⟨ẌS ⟩ − ⟨Ψ21⟩⟨Z̈S ⟩
B1ζ = ⟨Ψ12ẌS + Ψ22Z̈S ⟩ − ⟨Ψ12⟩⟨ẌS ⟩ − ⟨Ψ22⟩⟨Z̈S ⟩
B0 = ⟨Ẍ2

S + Z̈2
S ⟩ − ⟨ẌS ⟩2 − ⟨Z̈S ⟩2. (8)

Equation (7) means that b(ξ, ζ) takes the minimum value b∗
at (ξ∗, ζ∗), with

(ξ∗, ζ∗) =
(
−

B1ξ

B2
,−

B1ζ

B2

)
, (9)

and

b∗ = B0 −
B2

1ξ + B2
1ζ

B2
. (10)

Equation (9) gives the position of point at which the am-
plitude fluctuation of acceleration in LC takes the mini-
mum value for the given time series between t0 and t0 + τ.
We refer this point as a least acceleration fluctuation point
(LAFP) and Eq. (10) expresses the amplitude of accelera-
tion fluctuation at LAFP.

In order to apply the method described above to a dis-
crete time series of Aξ(t j), Aζ(t j) and Gη(t j) with j = 1, · · · ,
obtained from the sensor, we take a following procedure.
First, ψ(t j) is calculated from Gη(t j) = ψ̇(t j) by a numerical
integration,

ψ(t j) = ψ(t0) +
j∑

i=0

Gη(ti)δt. (11)

Similarly the angular acceleration ψ̈(t j) is calculated by a
numerical differentiation,

ψ̈(t j) =
Gη(t j+1) −Gη(t j)

δt
. (12)

Higher-order corrections to these differentiation / integra-
tion are expected to improve the accuracy. ẌS , Z̈S and Ψi j

with i, j = 1, 2 are obtained by Eqs. (4) and (5). Finally
the position and the fluctuation amplitude of acceleration
of LAFP can be estimated by Eqs. (9) and (10) with sub-
stituting all the quantities into Eq. (8).

There are two comments: (i) The initial angle ψ(t0) does
not appear in LAFP position (ξ∗, ζ∗) and the fluctuation am-
plitude

√
b∗. This is because ψ(t0) determines the angle
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between SC and LC while we focus only on LAFP in the
relative position expressed in SC. Mathematically, this can
be proofed by showing that b(ξ, ζ), i.e., all the coefficients
B2, B1ξ, B1ζ and B0 are invariant under the constant rotation
around S, ψ→ ψ+const. Similarly the constant term in Eq.
(5), such as g, does not affect the final result on the LAFP
position shown in Eq. (9). If we want know the LAFP po-
sition in LC, both ψ(t0) and g should be specified. (ii) No
periodicity of ψ, Aξ, Aζ is required. In principle, the pro-
cedure described above can be applied for an arbitrary τ.
It becomes, however, less accurate for too short τ. If so, ψ
and ψ̈ become noisy because we obtained these quantities
by numerical integration / differentiation of ψ̇ = Gη.

3. Example of swinging pendulum

An experiment using a pendulum with a multi-logger are
performed to validate the accuracy of the proposed method.
By applying method to the measured time series of accel-
eration and angular velocity, the position of LAFP is esti-
mated and compared with the result obtained by a different
method using image analysis.

The multi-logger is NinjaScan-Light (Switch Science
Ltd.) which contains the inertial sensor composed of a tri-
axial accelerometer and a tri-axial gyroscope (MPU-6000,
TDK InvenSense, sampling frequency 100Hz). This logger
is attached to a pendulum (Chaotic Pendulum Ltd.). The
pendulum can swing freely around the fulcrum. Therefore
LAFP corresponds to the fulcrum in this setup.

Experimental procedure is as follows: Attach the log-
ger to the pendulum. Take several photos of the apparatus
with a digital camera, which are used for image analysis
described later. Then, let the pendulum swing freely from
a certain initial condition for several periods. This proce-
dure is repeated several times with different initial condi-
tions of swing amplitude. Two different setups of the po-
sition and the angle of the sensor are performed. When
all the procedure is completed, the recorded data are trans-
ferred to the computer and converted by dedicated soft-
ware (NinjaScan GUI.exe) and analyzed by the proposed
method.

Figure 2 shows a setup (top), a close up of the logger
(inset) and a typical time series obtained from the inertial
sensor (bottom). The proposed method is applied to ap-
proximately one swing period of time series. Hereafter, the
estimated distance and angle from the sensor to LAFP are
referred as l∗ ≡

√
ξ2
∗ + ζ

2
∗ and ϕ∗ ≡ tan−1(ζ∗/ξ∗), respec-

tively.
Apart from this procedure, the distance and the angle

from the sensor to the fulcrum are measured by the image
analysis of the apparatus. Namely, a pair of markers is at-
tached to the logger to specify the position and the direction
of axis of the sensor (Fig 2). Several still images with dif-
ferent swing angles of the pendulum are taken by a digital
camera for each setup and analyzed by ImageJ[7]. The po-
sitions of the markers are measured in each image. Then
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Figure 2: (top) The experimental setup. The inertial sensor
(NinjaScan-Light) is attached to the pendulum. The time
series of acceleration and angular velocity are recorded in
a micro SD card. After trials of the pendulum swinging,
data in the micro SD card are transferred to PC and ana-
lyzed. A close up of the logger is shown in the inset. Apart
from the proposed method, the fulcrum position relative to
the sensor is measured by an image analysis. The distance
between the sensor and the fulcrum is 0.26 m in this setup.
(bottom) Typical time series of acceleration and angular ve-
locity. The pendulum starts to swing at t ≈ 319.8 s, whose
period is approximately 1 s. In this case the both Aξ and Aζ

have two peaks in a period. This is because the sensor is
attached to the pendulum at an angle.

the position of the fulcrum is estimated as an equi-distance
point from the same marker in different images. The dis-
tance between the estimated position of fulcrum and the
sensor marker by the image analysis is referred as lF . The
angle between the ξ axis and the vector from the sensor to
the fulcrum is ϕF .

Figure 3 is the result of comparison of (a) the length (lF

and l∗) and (b) the angle (ϕF and ϕ∗). If the points lay on the
diagonal line, it means that there are no errors. There are
six data, i.e., two setups with different position and angle
of the sensor, and three different swinging amplitudes for
each setup. All of them lay near the diagonal line as shown
in Fig. 3. The error are estimated as |lF − l∗| < 3× 10−3 [m]
and |ϕF − ϕ∗| < 1.5 [deg] for these setups.

In this analysis, we exhibit the result using the time se-
ries of Aξ, Aζ and Gη of almost one swing period (≈ 1 s)
from a certain timing. As noted in the end of the previous
section, the result is not changed qualitatively unless too
short interval of time series is used.
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Figure 3: Validation of the method, the distance (a) and the
angle (b) from the sensor to LAFP. In both plots, the hori-
zontal and the vertical axes correspond to the measured val-
ues from the image analysis and the estimated value from
the proposed method, respectively. Two setups with differ-
ent l and ϕ are shown by different colors, i.e., (lF , ϕF) ≈
(0.224,−175.8) [m,deg] (red) and (0.261,−138.8) [m, deg]
(blue). For each setup, three trials with different swing
amplitude are shown by different symbols, i.e., ∼ 5 deg
(small), ∼ 20 deg (medium) and ∼ 80 deg (large). All of
them lay near the diagonal line which means no errors.

4. Summary

The proposed method estimates the position of LAFP,
i.e., the least shaken point on the object, from the time se-
ries of acceleration and angular velocity obtained by an in-
ertial sensor attached to the object in motion. The position
of LAFP is compared by the image analysis method for a
pendulum experiment. Unlike the image analysis method,
the advantage of not requiring to measure from outside and
the smallness of the error both demonstrate the usefulness
of the proposed method. In order to evaluated the accuracy
in different situations, positional tracking system based on
image analysis such as OpenPose may be applicable[8].
From the time series of positional data, the acceleration and
its fluctuation of focused points may be estimated.

A possible significance of LAFP is that it may charac-
terize the qualitatively different motions of animal locomo-
tion. For example, the location of the LAFP in human gait,
i.e., walking and running and their relationship to the form
of locomotion may be considered[9]. Another significance
is its application as an index for determining the comfort-

able place to ride in a vehicle. According to ISO 2631-1,
the effective value of vibration acceleration of whole body
vibration is used to evaluate ride comfort[10]. By Applying
a frequency filter, it can be useful to find the most comfort-
able place to ride.

In this analysis, the motion of the object is limited to the
two-dimensional vertical plane. In case of animal locomo-
tion, this is valid for a symmetrical motion with respect to
the sagittal plane. There are, however, many gaits or three-
dimensional maneuvers which do not hold this symmetry.
In these cases, an extension to the three-dimensional mo-
tion is required. The quartanion formula is promising.
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