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Abstract—In this work we provide a brief overview
of recently proposed symplecticity-preserving symmetric
splitting methods for semi-classical Hamiltonian dynamics
of charge transfer by intrinsic localized modes in nonlinear
crystal lattice models [1]. Without loss of generality, we
consider one-dimensional crystal lattice models described
by classical Hamiltonian dynamics, whereas charge parti-
cle is modeled as quantum particle within the tight-binding
approximation. Canonical Hamiltonian equations for the
coupled lattice-charge dynamics are derived. Structure-
preserving splitting methods are constructed by splitting
the total Hamiltonian into the sum of Hamiltonians which
individual dynamics can be solved exactly. Exactly charge
conserving symplectic splitting methods are also proposed
which require only one solution of a linear system of equa-
tions per time step. Developed computationally efficient
non-dissipative methods provide new means for long-time
simulations of charge transfer by nonlinear lattice excita-
tions.

1. Introduction

Study of charge transfer by nonlinear lattice excita-
tions is of particular interest in solid state physics, where
transport of charge in silicates by moving nonlinear lo-
calized exictations is experimentally confirmed, the phe-
nomenon called hyperconductivity [2]. Intrinsic localized
modes (ILMs), such as discrete breathers, kinks and soli-
tons, have been extensively studied from analytic and nu-
merical points of view in crystal lattice models [3, 4]. Tra-
ditionally, such lattice models at zero temperature are de-
scribed by classical Hamiltonian dynamics with empirical
particle interaction potentials, and by thermostated Hamil-
tonian dynamics at a given temperature [5].

The transport of charge (electrons or holes) by ILMs
[4, 6, 7, 8] poses new numerical simulation challenges
due to different oscillation time scales of charge and lat-
tice particles which motivates to consider splitting meth-
ods for numerical integration of coupled lattice-charge dy-
namical equations. We demonstrate that lattice-charge dy-
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namics can be stated into classical canonical Hamiltonian
form and, while the Hamiltonian is not separable in all vari-
ables, explicit symplectic and time-reversibility preserving
numerical integrators can be constructed with good approx-
imate energy and charge conservation in long-time numer-
ical simulations. We also develop semi-implicit exactly
charge conserving symplectic splitting methods. In addi-
tion, such splitting method approach may further allow us
to develop multiple time stepping schemes, such as the im-
pulse method [5, 9], to further improve numerical integra-
tion of the multiscale dynamics, and high order methods
[5, 9], to improve numerical accuracy of nonlinear local-
ized wave simulations.

2. Mathematical Problem

In this section we describe mathematical model in di-
mensionless form of coupled lattice-charge dynamics mod-
eled by the total (classical) Hamiltonian:

H = Hlat + Hc, (1)

i.e., the sum of lattice and charge Hamiltonians, respec-
tively, where

Hlat =

N∑
n=1

 1
2Mn

p2
n + U(qn) +

1
2

N∑
n′=1
n′,n

V(|qn − qn′ |)

, (2)

Hc =

N∑
n=1

 1
2τ

En(q1, . . . , qN)
(
a2

n + b2
n

)
−

1
2τ

N∑
n′=1
n′,n

J(qn, qn′ ) (anan′ + bnbn′ )

. (3)

N is the number of lattice particles, qn ∈ R, pn ∈ R and
Mn > 0 are the nth particle’s position, momentum and
rescaled mass, respectively. In the lattice Hamiltonian (2)
U is the on-site potential and V is the radial interparticle
potential energy. In our considerations lattice model (2) is
thought to be a one-dimensional crystal lattice model of a
three-dimensional layered crystal where the on-site poten-
tial U models forces from the upper and lower layers of the
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crystal, whereas the interaction potential V models repul-
sive and, potentially, as well as attractive forces of lattice
particles.

To derive Hamiltonian (1) equations in the dimension-
less form we consider characteristic mass M > 0, length
scale σ > 0, time scale T > 0 and energy scale E > 0
values such that the relation E = Mσ2T−2 holds. In the
charge Hamiltonian (3) τ = ~(ET)−1 > 0 is the dimension-
less Planck’s constant rescaled with respect to the energy
and time scales. Thus, depending on the model we can de-
fine either energy scale E or time scale T to obtain the value
of τ, or on the other hand, for any value of τ we can find
associated energy and time scales given by the following
expressions: E = ~2(τMσ)−2 and T = τMσ2~−1.

In the charge Hamiltonian (3) variables an and bn are the
real and imaginary parts of

√
2τcn, where cn is the proba-

bility amplitude and Pn := |cn|
2 is the probability of finding

an electron or hole at site n. The total probability

N∑
n=1

Pn = 1 (4)

is conserved as it is the sum
∑N

n=1 a2
n + b2

n = 2τ. The
introduction of this normalization is convenient from the
problem formulation point of view as the system becomes
canonical.

Symmetric charge hopping function J(qn, qn′ ) ≥ 0, i.e.,
J(qn, qn′ ) = J(qn′ , qn), describes charge transfer between
states n and n′. Naturally, the transfer function J depends
on the particle interaction distance rn,n′ := |qn − qn′ | and is
often modeled with exponential decay [4, 6]: J(qn, qn′ ) :=
J0 exp

(
−αrn,n′

)
, where the dimensionless parameter α > 0

specifies the rate of exponential decay, while the constant
J0 ≥ 0 models relative strength of charge transfer from one
site to another and is model dependent. Smooth multivari-
able function En(q1, . . . , qN) ∈ R in (3) describes charge
energy at site n and, in general, will depend on the lattice
particle positions, or can be modeled as constant.

For completeness we state rescaled canonical Hamilto-
nian equations derived from (1) with (2)–(3) in the compo-
nent form:

q̇n =
1

Mn
pn, (5)

ȧn =
1
τ

En(q1, . . . , qN)bn −
1
τ

N∑
n′=1
n′,n

J(qn, qn′ )bn′ , (6)

ṗn = −U′(qn) −
N∑

n′=1
n′,n

∂qn V(|qn − qn′ |)

−
1
2τ

N∑
n′=1

∂qn En′ (q1, . . . , qN)
(
a2

n + b2
n

)
+

1
τ

N∑
n′=1
n′,n

∂qn J(qn, qn′ ) (anan′ + bnbn′ ) , (7)

ḃn = −
1
τ

En(q1, . . . , qN)an +
1
τ

N∑
n′=1
n′,n

J(qn, qn′ )an′ , (8)

for all n = 1, . . . ,N.
Canonical Hamiltonian equations are well known to be

symplectic, and, thus, they also conserve phase volume.
Apart from the conservation of the total Hamiltonian (1),
charge probability (4) is also conserved. Dynamics (5)–
(8) is time-reversible, i.e., equations are invariant under the
transformation:

ρ(q, a,−p,−b,−t) = (q, a, p, b, t), (9)

where q := (q1, q2, . . . , qN)T , a := (a1, a2, . . . , aN)T , p :=
(p1, p2, . . . , pN)T and b := (b1, b2, . . . , bN)T . In addition,
Hamiltonian equations (5)–(8) are invariant under a con-
stant rotation of charge variables an and bn, i.e., for any
given angle θ ∈ R equations (5)–(8) are invariant under the
following transformation:

η(q, ā, p, b̄, t) = (q, a, p, b, t), (10)

where ā = cos(θ)a − sin(θ)b and b̄ = sin(θ)a + cos(θ)b.
The system of differential equations (5)–(8) is highly

nonlinear and, thus, it is very desirable to obtain an ex-
plicit, or at least linearly implicit, numerical integration
scheme, while at the same time attempting to preserve as
many as possible structural properties of the Hamiltonian
system (5)–(8) stated above, which we discuss in the fol-
lowing section.

3. Splitting Methods

In this section we review recently proposed
symplecticity-preserving symmetric splitting methods
for the Hamiltonian dynamics (5)–(8) [1]. We consider
two classes of methods, i.e., semi-implicit exactly charge
probability (4) and rotational invariance (10) conserving
and fully explicit methods. All proposed methods are
symplectic, symmetric and of second order. From the
computational efficiency point of view all methods require
only one lattice force: first two force terms in (7), and
function En(q1, . . . , qN) and J(qn, qn′ ) calculations in (6)
and (8) per time step, and at most two evaluations of the
last two force terms in (7) with the same values of qn,
i.e., only values of an and bn differ. Compared to the
semi-implicit methods, which require one solution of a
linear system of equations per time step, the fully explicit
methods do not exactly conserve charge probability (4) and
rotational invariance (10). Recall that symmetric methods
preserve time-reversibility property (9) [9].

To construct symplectic splitting methods we consider
the total Hamiltonian (1) as the sum of the following
Hamiltonians: H = HQ + HP + HD + HA + HB, where

HQ =

N∑
n=1

1
2Mn

p2
n, (11)
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HP =

N∑
n=1

U(qn) +
1
2

N∑
n′=1
n′,n

V(|qn − qn′ |)

, (12)

HD =
1
2τ

N∑
n=1

En(q1, . . . , qN)
(
a2

n + b2
n

)
, (13)

HA = −
1
2τ

N∑
n=1

N∑
n′=1
n′,n

J(qn, qn′ )bnbn′ , (14)

HB = −
1
2τ

N∑
n=1

N∑
n′=1
n′,n

J(qn, qn′ )anan′ . (15)

In addition, for construction of charge probability conserv-
ing splitting methods we also consider the Hamiltonians:

HC = HD + HA + HB, (16)
HW = HA + HB. (17)

Importantly, corresponding Hamiltonian systems associ-
ated to each Hamiltonian (11)–(15) can be solved exactly.
Each such solution we identify with analytic symplectic
flow maps: φQ

t , φP
t , φD

t , φA
t and φB

t , respectively. What fol-
lows, with q0

n, a0
n, p0

n and b0
n we identify initial conditions

at time t = 0, where t ≥ 0.
Solution of the Hamiltonian system associated to split

dynamics (11) reads:

an(t) = a0
n, pn(t) = p0

n, bn(t) = b0
n,

qn(t) = q0
n +

1
Mn

tp0
n,

for all t > 0 and n. Similarly, solution of the Hamiltonian
system associated to split dynamics (12) reads:

qn(t) = q0
n, an(t) = a0

n, bn(t) = b0
n,

pn(t) = p0
n − t

U′(q0
n) +

N∑
n′=1
n′,n

∂qn V(|q0
n − q0

n′ |)

.
Exact solutions of the Hamiltonian systems with Hamilto-
nians (14) and (15) are, i.e., the flow maps φA

t and φB
t :

qn(t) = q0
n, bn(t) = b0

n,

an(t) = a0
n −

1
τ

t
N∑

n′=1
n′,n

J(q0
n, q

0
n′ )b

0
n′ ,

pn(t) = p0
n +

1
τ

t
N∑

n′=1
n′,n

∂qn J(q0
n, q

0
n′ )b

0
nb0

n′ ,

and

qn(t) = q0
n, an(t) = a0

n,

pn(t) = p0
n +

1
τ

t
N∑

n′=1
n′,n

∂qn J(q0
n, q

0
n′ )a

0
na0

n′ ,

bn(t) = b0
n +

1
τ

t
N∑

n′=1
n′,n

J(q0
n, q

0
n′ )a

0
n′ ,

respectively, for all t > 0 and n = 1, . . . ,N.
To find exact solution of the Hamiltonian system associ-

ated to the Hamiltonian (13) we first write down the system
of equations:

q̇n = 0, (18)

ȧn =
1
τ

En(q1, . . . , qN)bn, (19)

ṗn = −
1
2τ

N∑
n′=1

∂qn En′ (q1, . . . , qN)
(
a2

n + b2
n

)
, (20)

ḃn = −
1
τ

En(q1, . . . , qN)an, (21)

and make an important observation that with constant val-
ues of qn coupled equations (19) and (21) for variables an

and bn can be solved exactly for all n, i.e.,

an(t) = a0
n cos(ωnt) + b0

n sin(ωnt), (22)
bn(t) = −a0

n sin(ωnt) + b0
n cos(ωnt), (23)

where ωn := τ−1En(q0
1, . . . , q

0
N), and the equation (20) is

invariant under the solution (22)–(23), i.e., an(t)2 + bn(t)2 =

a0
n

2
+b0

n
2 for all n and t. Thus, the exact (explicit) solution of

the Hamiltonian system (18)–(21) is in the following form:

qn(t) = q0
n,

an(t) = a0
n cos(ωnt) + b0

n sin(ωnt),

pn(t) = p0
n −

1
2τ

t
N∑

n′=1

∂qn En′ (q0
1, . . . , q

0
N)

(
a0

n
2

+ b0
n

2
)
,

bn(t) = −a0
n sin(ωnt) + b0

n cos(ωnt).

In conclusion, all analytic symplectic maps φQ
t , φP

t , φD
t , φA

t
and φB

t are explicit maps which will provide means to con-
struct explicit symplecticity-preserving numerical meth-
ods. Note that flow maps φA

t and φB
t do not preserve

charge probability (4) and rotational invariance (10). To
preserve (4) and (10) we could solve split Hamiltonian
systems with Hamiltonians (16) or (17) with symplectic
implicit midpoint-rule which preserves quadratic invari-
ants [9]. Notice that all three Hamiltonians (13)–(15) are
quadratic with respect to charge variables an and bn. In [1]
we have demonstrated that numerical stability and accu-
racy can be greatly improved by splitting Hamiltonian (16)
into two Hamiltonians HD and HW. Such splitting naturally
occurs by splitting the kinetic from the potential energy in
splitting methods for solving continuous Schrödinger equa-
tions.

With the analysis above we list the splitting methods
proposed in [1]. What follows, with ψh we identify a nu-
merical flow map which advances a given system’s state
(q, a, p, b)T into a new state (Q, A, P, B)T in time after the
time step h > 0. All four proposed semi-implicit methods
are listed in Table 1, while all four fully explicit splitting
methods are shown in Table 2. In Table 1 with ψC

h and ψW
h
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Numerical flow maps ψh

PQCQP
φP

h/2 ◦ φ
Q
h/2 ◦ ψ

C
h ◦ φ

Q
h/2 ◦ φ

P
h/2

QPCPQ
φQ

h/2 ◦ φ
P
h/2 ◦ ψ

C
h ◦ φ

P
h/2 ◦ φ

Q
h/2

PQDWDQP
φP

h/2 ◦ φ
Q
h/2 ◦ φ

D
h/2 ◦ ψ

W
h ◦ φ

D
h/2 ◦ φ

Q
h/2 ◦ φ

P
h/2

QPDWDPQ
φQ

h/2 ◦ φ
P
h/2 ◦ φ

D
h/2 ◦ ψ

W
h ◦ φ

D
h/2 ◦ φ

P
h/2 ◦ φ

Q
h/2

Table 1: Semi-implicit symplecticity-preserving symmet-
ric and charge probability conserving splitting methods.

Numerical flow maps ψh

PQABDBAQP
φP

h/2 ◦ φ
Q
h/2 ◦ φ

A
h/2 ◦ φ

B
h/2 ◦ φ

D
h ◦ φ

B
h/2 ◦ φ

A
h/2 ◦ φ

Q
h/2 ◦ φ

P
h/2

QPABDBAPQ
φQ

h/2 ◦ φ
P
h/2 ◦ φ

A
h/2 ◦ φ

B
h/2 ◦ φ

D
h ◦ φ

B
h/2 ◦ φ

A
h/2 ◦ φ

P
h/2 ◦ φ

Q
h/2

PQDABADQP
φP

h/2 ◦ φ
Q
h/2 ◦ φ

D
h/2 ◦ φ

A
h/2 ◦ φ

B
h ◦ φ

A
h/2 ◦ φ

D
h/2 ◦ φ

Q
h/2 ◦ φ

P
h/2

QPDABADPQ
φQ

h/2 ◦ φ
P
h/2 ◦ φ

D
h/2 ◦ φ

A
h/2 ◦ φ

B
h ◦ φ

A
h/2 ◦ φ

D
h/2 ◦ φ

P
h/2 ◦ φ

Q
h/2

Table 2: Fully explicit symplecticity-preserving symmetric
splitting methods.

we have identified numerical flow maps of implicit mid-
point rule applied to respective Hamiltonian systems. For
example, the implicit midpoint rule ψW

h reads:

Qn = qn, (24)

An = an +
h
τ

En(q)
Bn + bn

2
−

h
τ

N∑
n′=1
n′,n

J(qn, qn′ )
Bn′ + bn′

2
, (25)

Pn = pn +
h
τ

N∑
n′=1
n′,n

∂qn J(qn, qn′ )ζn,n′ , (26)

Bn = bn −
h
τ

En(q)
An + an

2
+

h
τ

N∑
n′=1
n′,n

J(qn, qn′ )
An′ + an′

2
, (27)

where ζn,n′ = 1
4 [(An + an)(An′ + an′ ) + (Bn + bn)(Bn′ + bn′ )],

En(q) = En(q1, . . . , qN) and momentum value Pn in (26) is
found explicitly after the linear equation system (equations
(25) and (27) for all n = 1, . . . ,N) is solved for the charge
variables An and Bn.

4. Summary and Conclusions

In this work we have reviewed recently proposed ge-
ometric structure-preserving splitting methods for the
Hamiltonian dynamics (5)–(8) [1]. In [1] we have per-
formed extensive numerical study (not shown) to investi-
gate and compare all proposed methods in Tables 1 and

2. Numerical results, which will be presented at the con-
ference, show that the best results from all semi-implicit
methods are obtained with the method PQDWDQP, while
from all explicit methods in Table 2 the best results were
obtained with the method PQDABADQP, measured by nu-
merical errors in the Hamiltonian (1) and charge proba-
bility (4) conservation in numerical simulations of charge
transfer by discrete breathers.
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