
RSA Encryption / Decryption Using Repeated Modulus Method 
Hasan Amin Oseily & Ali Massoud Haidar 

Electrical Department, Faculty of Engineering 
Beirut Arab University 

Beirut-Lebanon 
E-mail: sasoha@yahoo.com, ari@bau.edu.lb 

 
Abstract- This paper proposes the implementation of RSA 
encryption / decryption algorithm [1] using the simplification 
of repeated modulus in order to improve the performance. 
This algorithm will be compared with that based on Ancient 
Indian Vedic Mathematics [4] and the traditional algorithm [3] 
based on the straight division algorithm (sequential 
subtraction, multiplication, shifting..). The recently proposed 
hierarchical overlay multiplier architecture is used in the RSA 
circuitry for multiplication operation; the Carry save adder is 
used. The most significant aspect of the paper is the 
development of a division architecture based on straight 
division algorithm but with repeated operation of identical 
modulus and embedding it in RSA encryption / decryption 
circuitry for efficiency improvement. The examples show that 
RSA circuitry implemented using repeated identical modulus 
algorithm with division and multiplication is efficient in terms 
of speed compared to its implementation using conventional 
multiplication and division architectures.  

1.  Introduction 
   The standard techniques for providing privacy and security 
in data networks include encryption / decryption algorithms 
such as Advanced Encryption System (AES) (private-key) and 
RSA (public-key) [1,2,3]. RSA is one of the safest standard 
algorithms, based on public-key, for providing security in 
networks. While hardware implementation of this algorithm 
tends to be faster compared to its software counterpart, there is 
a scope for further improvement of performance of RSA 
hardware. One of the most time consuming processes in RSA 
encryption / decryption algorithm is the computation of (Me 

mod N) where M is the text, (e,N) is the key[4]. This paper 
examines how this computation could be speeded up on the 
repeated modulus. 

2. RSA Algorithm 
  The RSA cryptosystem, designated after its inventors Ron 
Rivest, Adi Shamir, and Len Adleman. The following section 
describes how to use the RSA cryptosystem. 
 
2.1 Generating Keys 
Let Alice selects two random prime numbers p and q and 
computes the products: 
 

N = p · q 
 

K =(p-1).(q-1) 
                
Additionally Alice selects a natural number e with 
 

 
1 < e < K   &   gcd (e, K) = 1 

 
And computes a natural number d with 
 

1 < d < K   &   d·e =1 mod K 
 

Since gcd (e,K) =1, there is actually such a number d. It can 
be computed with the extended Euclidean algorithm. We also 
consider that e is always odd. The public key consists of the 
pair (e, N). The private key is d. The number N is called RSA 
modulus, e is called encryption exponent and d is called 
decryption exponent.  
 
2.2 Encryption 
The finite set of plain text (M) consists of all natural numbers. 
A plaintext M is encrypted with  
 

C = Me mod N 
 
Where C is the cipher-text 
 
2.3 Decryption 
The decryption is the reverse operation decryption. To decrypt 
a cipher text C using RSA algorithm  
 

M = Cd mod N 
 
Where M is the plain-text, d is the decryption key. 
 
2.4 Security of RSA 
To find out the secret RSA key is as difficult as factorizing the 
RSA modulus. However, the attacker can also have the 
intention to find the plain text from the cipher-text. It is not 
known whether it is therefore necessary to find the secret RSA 
key. But even if it could be proved that breaking RSA is as 
difficult as factorizing the RSA modulus, this would not 
automatically signify that RSA is totally secure, since there is 
no knowledge about the difficulty of factorizing natural 
numbers. 
 
2.5 The Selection of p and q 
To make the factorization of the RSA modulus N as difficult 
as possible, both prime factors p and q should be chosen the 
same size.  
 
2.6 The Selection of e 
The exponent e should be chosen in such a manner that the 
encryption is efficient, without decreasing the security. The 

    (5)

   (1)

    (2)

   (3)

   (4)

   (6)

2008 International Symposium on Nonlinear Theory and its Applications
NOLTA'08, Budapest, Hungary, September 7-10, 2008

- 712 -



choice e = 2 is always excluded because    K = (p−1)·(q−1) is 
even and gcd(e, K)=1 must be matched. Therefore, the 
smallest exponent would be three. With e = 3 a low exponent 
attack is going to be successful.  
 
2.7 The Selection of d 
The decryption exponent d has to be greater than 292; 
otherwise the RSA cryptosystem can be broken.  
 
3. Algorithms to Compute Modulus 
We will make here a quick revision for two algorithms to 
determine the quotient and the remainder (or the modulus). 
The first is the classical algorithm with repeated operation 
multiplication /subtraction for dividend by divisor. The other 
algorithm is based on the Vedic division algorithm of ancient 
Indian mathematics. After, we will introduce our algorithm 
with a brief comparison to other methods.  
   
3.1 Integer Division Classical Algorithm 
In general, we divide a number A with 2n bit by a number N 
with n bit. We get from this operation a quotient Q and 
remainder R. we can write: 
 

A = Q * N + R 
 
The remainder could be written by notation as: 
 

R = A mod N 
 

For example to divide 32 bits dividend by a 6 bits divisor, we 
use the same approach as multiplication where we make use of 
positional representation of binary integers to avoid simple 
repeated subtraction algorithm. But in higher valued logic, the 
matter will be different and much difficult. 

 
3.2 Unsigned Binary Division Algorithm 
To apply the division operation, we need one iteration per bit 
by subtracting the divisor from a partial remainder and test it 
to see if less than 0. 
 

• If less than zero: divisor did not fit once, so left shift 
in a 0 in quotient and add divisor back to partial 
remainder. 

 
• If >= zero: it fit, left shift a 1 in quotient and shift 

divisor register right. 
 
For example when dividing two binary numbers with 32 bit 
dividend (11011101010101010101010101010111) and 6 bits 
for divisor (110110) here a lot of subtraction and shifting 
operation will be applied up to get the final results.  
 
3.3 Vedic Division Algorithm  
The Division architecture takes N bits of dividend and N bits 
of divisor to generate the quotient and the remainder. The 
architecture is based on Straight (At Sight) Division algorithm 
of Ancient Indian Vedic Mathematics [6]. To simplify the 
understanding of the algorithm, it is explained for 3 digits 
number (X2X1X0) by 2 digits number (Y1Y0).  

Steps: 
• First do X2/Y0 (divide) to get Z1 as quotient and C1 as 

remainder. 
 

• Call Procedure ADJUST (Z1, C1, X1, Y1, Y0). 
 

• Now take the next dividend as 
 

K = (C1 * 10 + X1) - (Y1 * Z1) 
 

• Do K/Y0 (divide) to get Z0 as quotient and C0 as 
Remainder, 
 

• Call procedure ADJUST (Z0, C0, X0, Y1, Y1). 
Now our required remainder, 

 
RD = (C0 * 10 + X0) - (Y1 * Z1) 

  
And hence the Quotient 

Qt = Z1.Z0 
 
The algorithm can be generalized for N digit/bit by N digit/bit 
but for numbers with great length, the number of equation will 
be also great.  
 
4. Repeated Modulus Algorithm 
Based on the arithmetic properties of modulus, we can 
develop an algorithm to simplify the operations of division 
when encrypting a plain text in order to get a cipher text. Let 
A, B, C and D are natural numbers then, 
 
(A*B*C*D mod N) = [(A mod N) * (B mod N) * (C mod N) * 

(D mod N) * …..] mod N 
 
This reduces the intermediate results to modulo N and makes 
the calculation practical. 
 
The division architecture takes 2N bits for dividend and N bits 
for divisor to generate the quotient and the remainder. The 
architecture is based on the straight division algorithm of 
repeated modulus. To simplify the understanding of algorithm, 
it is explained in the following steps. 
  
Based on the RSA algorithm, Let M be a plain text where M is 
a binary digit with n bits and e is the encryption exponent. 
Based on the equation 5, the cipher text will be: 
 
Cipher = Me mod N 
 
Where,  
 
(N = p . q)   and  e < N 
 
Then M is multiplied by itself e times. Applying the equation 
(12), 

Cipher = M*M*M*M*M… mod N 
= [(M mod N)*(M mod N)*...] mod N 

  
To analyze this equation, we have two cases: 

    (7)

    (8)

   (9)

    (10)

    (11)

   (12)

    (13)

- 713 -



4.2 For M > N 
In this case, the following steps are required 
 

• Step 1: We compute only one cell (M mod N) = R1 
(remainder) since all cells are repeated or identical. 
 

• Step 2: Replacing all cells by the remainder R1
 in the 

equation (13), we get 
 

(R1*R1*R1*R1….) mod N = Re  mod N 
 

• Step 3: Verify if Re < N 
-If yes, then the final remainder is RD = Re   
-If no, then we go to the next step. 
 

• Step4: Splitting the term Re  into sets as, 
 

x * z + y = e 
Where,  
Rx>=N. 
Ry < N, then Ry is a remainder 
z is the number of term Rx  
  

• Step 5: Replacing the term Re by R(x * z + y) in the 
equation 14, we get 
 

Re mod N =  R (x * z +  y) mod N=  (R(x *  z) *R y ) mod N 
= [(Rx * Rx * Rx *….) mod N * Ry] mod N 

 
• Step 6: We repeat this computation until getting all 

terms less than the number N.  
 

4.2 Example 1 
 Let a message M with 6 bits M=101000=40 to be encrypted 
and the encryption key e=5=101, the prime numbers p=5=101 
and q=7=111 
Then: 

• N=5 * 7 =35 = 100011 (M>N) 
M mod N = 101000 mod 100011=5=101=R 

• Computing [R * R * R * R * R] mod N = R1 
=[5*5*5*5*5] mod 35. 

• Grouping into sets the remainder R 
R*R=5*5<35=N  
R*R*R=5*5*5=125>35 

• Then we have only two sets with e = z * x + y = 5 
y=2 
x=3 
z=(5-2)/3 =1 

• Compute (R * R * R mod N = 125 mod 35 = 20 = R1) 
The second set R*R=25<35 then R2=25 
Check R1*R2= 20*25=500>N then repeat the 
computation 

500 mod 35 = 10 
• To prove this result we can apply directly: 

M.M.M.M.M mod N = 40*40*40*40*40 mod 35 
102400000 mod 35 = 10 

Discussion: comparing the biggest cells of modulus (500) with 
the original number (102400000), we found that division of 
the number 500 by 35 is much easier than 102400000 by 35.   

4.3 For M < N 
In this case, we go directly to step 4, but with R=M  
 

• Step 4: Splitting the term Me into M(X*Z+Y) 
 Where: 
 Mx>=N. 
 My<N 
 z is the number of term Mx  

 
• Step 5: Replacing the term Me by M(x*z+y)  , Then 
 
 Me mod N = M(x * z + y) mod N =  (M(x * z)  * M y ) mod N 

= [(M x * M x * M x  *….) mod N * M y ] mod N 
 
 The terms of multiplication (MX mod N) are identical 

and consisting of identical cells. 
 We compute only one of these cells (MX mod N = R1 

where R1 is a remainder with R1<N) 
 
• Step 6: Replacing M x, M y in the equation (13) 

 
(R1*R1*R1*R1….M y) mod N  = R e-y * M y  mod N 

 
• Step 7: Verify if  Re-y * My  < N,  
 If yes, then the final remainder is RD= Re-y * My   
 If no, then we do repetition of the algorithm or we 

refer to step 5 with same sequence and logic. 
 
• We repeat the computation up to get a product of all 

remainders less than the divisor N. 
 
4.4 Example 2 
 Let we have a message M to be encrypted with 6 bits 
M=101000=40  and  e=3=11, let  p=7=111 and  q=7=111 
Then: 
 

• N=7*7=49=110001 (M<N) 
• Grouping M*M*M into two sets  

M*M=40*40>49=N  
M=40<49=N 

• Then we have only two sets with e = z * x + y=5 
y=1 
x=2 
z=(3-1)/2 =1 

• Compute M*M mod N = 1600 mod 35 = 32 = R1 
• The second set M=40<49 then  R2=40 
• Check R1*R2= 32*40=1280>N then repeat the 

computation 
1280 mod 49 = 6 
 

• To prove this result we can apply directly: 
M*M*M mod N = 40*40*40 mod 49 

64000 mod 49 = 6 

5. Flow Chart 
The flow chart of figure 1 shows the sequence of operations of 
division and multiplication. It is very clear that division 
operations are minimized to the least possible case. 

   (14)

   (15)

    (16)

   (17)

    (18)

- 714 -



Figure 1. Flow Chart of RSA Repeated Modulus Algorithm 

6. Analysis of Algorithms 
The RSA encryption/decryption circuitry achieves a 
significant improvement in performance using the repeated or 
identical modulus algorithm as reflected by the results shown 
in examples compared with traditional division algorithm. In 
cryptography, we care only about the remainder or the 
modulus to get the cipher and plain text and we do not take 
any care to get the quotient. Hence, the main advantage of this 

algorithm is the simplicity comparing with other techniques 
and the uniqueness of output (remainder instead of remainder 
+ quotient). Then it is found that when implemented with this 
algorithm, the RSA circuitry has less timing delay compared 
to its implementation using traditional multipliers and division 
algorithms. We can see that multiplication and division 
operations are two of the most important operations in 
computation of AB mod N and a high performance 
multiplication and division algorithm/ architecture will 
considerably improve the speeds of encryption and decryption. 
Two known methods of multiplication are array and booth 
multiplication each with its own limitations [5,6]. From the 
architecture point of view, division circuits are usually much 
larger than multiplier circuits for an equivalent data word 
length and division is generally performed through restoring 
and non-restoring algorithms [8,9]. A faster and novel 
hierarchical overlay multiplier has earlier been proposed based 
on Ancient Indian Vedic Mathematics [10] that performs 
better than the conventional multiplier architectures [6]. While 
this paper still utilizes the same concept in computation of AB 
mod N, but it proposes a novel and optimized algorithm to  
minimize the length of dividend number.  

7. Conclusion 
The RSA encryption / decryption implemented with repeated 
or identical modulus algorithm has improvement in efficiency 
in terms of speed and area. It has the advantage that as the 
number of bits increases the execution time of operations 
increase very slowly as compared to RSA encryption 
employing traditional multipliers and division algorithms [6]. 
 

References 
[1] R. Rivest, A. Shamir and L. Adleman, “A Method for Obtaining Digital 
Signatures and Public-Key Cryptosystems”. Communications of the ACM, 21 
(2), pp. 120-126, February 1978. 
[2] Daeman, J., and Rijmen, V. “Rijndael : “The Advanced Encryption 
Standard.” , Dr. Dobb’s Journal, March2001. 
[3] Daeman, J., and Rijmen, V. “ The Design of Rijndael: The Wide Trail 
Strategy Explained”, New York, 
Springer- Verlag, 2000. 
[4] William Stallings, “ Cryptography and Nework Security”, Third Edition, 
Pearson Education, 2003 
[5]Himanshu Thapliyal, R.V Kamala and M.B Srinivas "RSA 
Encryption/Decryption in Wireless Networks Using 
an Efficient High Speed Multiplier", Proceedings of IEEE International 
Conference On Personal Wireless 
Communications (ICPWC-2005) , New Delhi, pp-417-420, Jan 2005. 
[6] Himanshu Thapliyal and M.B Srinivas, "High Speed Efficient Hierachical 
OverlayMultiplier Architecture 
Based on Ancient Indian Vedic Mathematics", Proceedings of International 
Conference on Signal Processing, 
ICSP 2004, Turkey, Dec 2004. 
[7] M.M. Mano, “Computer System Architecture”, 2nd Ed, Prentice Hall, 
1982. 
[8] V.C. Hamacher, Z.G. Vranesic, S.G. Zaky, “Computer Organisation”, PP-
281-285, 4th Ed, The Mcgraw Hill 
Company, 1996. 
[9] J.P. Hayes, “Computer Architecture and Organisation”, PP-244-250, 3rd 
Ed, The Mcgraw Hill Company,1998. 
[10] Jagadguru Swami Sri Bharath, Krsna Tirathji, “Vedic Mathematics or 
Sixteen Simple Sutras From TheVedas”, Motilal Banarsidas , 
Varanasi(India),1986. 

- 715 -


	Navigation page
	Session at a glance
	Technical program

