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Abstract– Long-range dependence of long-term 

continuous intracranial electroencephalograms (IEEG) of 

three patients suffering from different types of epilepsy has 

been assessed by estimation of the Hurst exponent (H). 

Sensitivity of the estimation approach to different artifacts 

has been evaluated. A drop of H has occurred during all 

seizures. Gradual changes of H have been observed in the 

preictal and postictal periods. Based on these findings a 

seizure detection/prediction method has been developed. 

 

1. Introduction 

 

Epilepsy is the second most common neurological 

disorder, affects 1% of the world’s population. For 25% of 

the patients no sufficient treatment is currently available. 

Novel diagnostic and therapeutic methods based on 

detection and prediction of epileptic seizures could 

improve the quality of live of these people [1]. 

Using short-term IEEG recordings we have shown that 

long-range dependence of brain electrical activity can be 

applied for detection of epileptic seizures [2], [3]. These 

results were confirmed by Osorio and Frei [4]. Our recent 

work revealed that fractal spectra of long-term IEEG show 

distinct changes in the preictal state of different types of 

human epilepsy [5]. In this study we attempt to confirm 

these results by estimation of H and to propose a seizure 

detection/prediction algorithm. 

 

2. Data and Methods 
 

2.1. Database 
 

Long-term continuous IEEG data recorded during 

presurgical monitoring procedure were provided for this 

study by the following three institutes: Department of 

Epileptology, University of Bonn, Germany (BEC); 

National Institute of Neurosurgery, Budapest, Hungary 

(NIN); National Institute of Psychiatry and Neurology, 

Budapest, Hungary (NIPN). 

Recording from BEC contained 10 clinical seizures of a 

patient suffering from mesial temporal lobe epilepsy 

(MTLE). The 5d 17h 41m long data were sampled at 

fs=200 Hz using depth (two 1x10) and strip (four 1x4, and 

two 1x6) electrodes. NIN provided a 22h 33m long 

recording that contained four seizures from a patient 

suffering from frontal lobe epilepsy (FLE). These data 

were recorded by grid (right frontal convexity, 6x8 

contacts; interhemispherial double sided with 2x2x5 

contacts) and strip (two interhemispherial, 1x8 contacts; 

one cortical above right central and parietal convexity 

with 1x8 contacts) electrodes at fs=500 Hz. The 2d 19h 

51m long recording from NIPN contained 3 seizures of a 

patient suffering from MTLE. The sampling rate was 

fs=256 Hz. Data were recorded by bilateral depth foramen 

ovale (FO) electrodes with four contacts. 

All recordings were provided in raw format, without 

any filtering, and artifact removal. 

 

2.2. Methods 
 

The stochastic process X(t) with continuous parameter t 

is self-similar with self-similarity parameter H if the 

distribution of the rescaled process c
-H

X(ct) is the same as 

the distribution of X(t), where c>0 is arbitrary. H is called 

the Hurst parameter or the Hurst exponent. When 

0<H<0.5, an increase in the process is more probably 

followed by a decrease and vice-versa, the process has 

short-range dependence. If H=0.5, observations of the 

process are uncorrelated. When 1>H>0.5, an increase in 

the process is more probably followed by an increase and 

a decrease is more probably followed by a decrease, the 

process has long-range dependence [6], [7]. 

We have implemented the rescaled adjusted range or 

R/S statistics based method [7], [8] for the estimation of 

H. Let X(i)N be a discrete time series. The partial sum 

process is denoted by Y(n), 
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where 
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The R/S statistics or the rescaled adjusted range is 

defined by 
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In [7] it was proven that for self-similar processes the 

expected value of R/S (n) is proportional to nH, i.e. 

 ( )[ ] ,C~ H

H
nnSRE  (6) 

as n → ∞, where CH is a positive constant and H is the 

self-similarity parameter of the process. Using this power 

law relationship the Hurst exponent can be estimated by: 

 ( )[ ] ( ).log)log(~ nnSREH  (7) 

For a more convenient discussion the Hurst exponent 

and its estimate will be denoted by the same symbol H in 

this paper. 

To estimate H, the N sample point long data segments 

were subdivided into K blocks. Blocks of length N/K 

corresponded to duration of 1 or 2 seconds. For each lag 

n, R(ki,n)/S(ki,n) was computed, starting at points 

ki=iN/K+1, i=1, 2, … , K. Overlapping of blocks was 

avoided, the upper boundary i.e. the high cut-off point 

(hcp) of n was limited to N/K. This way we got K different 

estimates of R(n)/S(n) for each value of lag n. By plotting 

log[R(ki,n)/S(ki,n)] versus log n we got the so-called pox 

plot for the R/S statistic. The parameter H can be 

estimated by fitting a line to the points in this plot, and it 

is equal to the slope of this line. Due to the transient zone 

at the low end of the plot we set a low cut-off point (lcp) 

as well. The low cut-off point was usually ~25% of N/K. 

Thus, we used only values of n that lie between the lower 

and higher cut-off points to estimate H. For a detailed 

description of this approach see [7], [8]. 

Before estimation no preprocessing was applied, raw 

data were used to minimize the computational cost and to 

reveal the sensitivity of the estimation method to artifacts. 

 

3. Results 
 

Fig. 1 compares the estimated H values for ictal 

(seizure) and interictal (between two seizures) data 

segments. These results suggest lower values of H during 

seizures. 

The R/S based approach is valid only for stationary 

data. Due to the non-stationarity of IEEG signals, short 

(2s-90s) overlapping (ol) and non-overlapping data 

segments were tested to estimate H. These were 

considered stationary. Choosing an appropriate segment 

length (sl) is a trade-off (Fig. 2). For a better estimation 

we need more sample points. On the other hand, using 

longer segments we are unable to detect short 

perturbations and this can also cause longer estimation 

and detection delays what we would like to minimize 

during the real-time seizure detection prcedure. Drop of H 

can be observed after the seizure onset time, during the 

ictal state as it was predicted by Fig. 1. Furthermore, 

gradual decrease of H can be observed in the 150s long 

preictal period before the seizure. 

Sensitivity of the estimation method to different 

artifacts should be analyzed, since misinterpretation of the 

results can lead to false detections and predictions of the 

seizures. Moreover, automatic rejection of some artifacts 

during online, real-time application could be difficult due 

to a high computational cost or impossible, since in some 

cases this task still requires a human expert. Fig. 3 depicts 

data segments containing electrocardiogram (ECG) and 

50Hz power line noise. The estimated H values of these 

signals are lower than H of data segments of interest 

presented in Fig. 1. This way, faulty electrodes 

contaminated with these artifacts could be excluded from 

analyses. However, if the ECG artifact occurs suddenly in 

one contact, it can produce a drop of H of similar extent as 

the drop during seizures. Common mode artifacts can be 

rejected using a bipolar montage (see Fig. 4 a-c). In this 

 
Fig. 1. Patient from NIPN, contact FO3. (a) 10s long ictal segment. 

(b) 10s long interictal segment, awake state. (c) Pox plot of (a), H = 

0.5045. (d) Pox plot of (b), H = 0.8615. Settings: K = 10, lcp = 64, hcp = 

250. 

Fig. 2. Patient from NIN, contact IHJ10, first seizure. Thin black 

curve – sl = 10s, ol = 9s. Gray curve – sl = 30s, ol = 29s. Thick black 

curve – sl = 60s, ol = 59s. Common estimation parameters: sl/K = 1s, lcp 

= 100, hcp = 450. Vertical solid line – seizure onset time provided by 

NIN. Vertical dashed line – end of the seizure determined by NIN. 
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case IEEG of adjacent contacts containing the same 

artifacts are subtracted from each other. Jumps of H 

denoted by vertical lines in Fig. 4 (a) and (b) disappear in 

(c). 

To reduce the delay presented in Fig. 2, sl = 3s long 

non-overlapping data segments were used in Fig. 4. 

Moving average using sliding windows of different 

lengths was applied to the estimated H values to perform 

trend analysis. The moving average of the X(i) discrete 

time series with 2q+1, q = 1, 2, … long sliding window 

can be defined as: 
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The black curve in part (d) of Fig. 4 depicts average H 

of eight bipolar channels (IHJ1-IHJ2, IHJ2-IHJ3, IHJ4-

IHJ5, IHJ6-IHJ7, IHB14-IHB15, GR5-GR6, GR6-GR7, 

CS7-CS8) selected by visual inspection of IEEG by 

clinicians from NIN. This way, the signal to noise ratio of 

H can be improved (compare c and d parts of the figure). 

Four drops of H can be observed during the 22h long 

recording of the patient suffering from FLE. These drops 

occurred immediately after the onsets of the seizures 

 
Fig. 3. Patient from NIN. (a) 10s long ECG segment. (b) 0.5s long 

segment recorded by faulty electrode contact. (c) Pox plot of (a), H = 

0.4833. (d) Pox plot of 10s long segment that contains (b), H = 0.0058. 

Settings for estimation of H: K = 10, lcp = 100, hcp = 450. 

Fig. 4. Patient from NIN, 22h long recording, 4 seizures. (a) H of IHJ4 contact, q = 5. Vertical lines – jumps of H due to artifacts. (b) H of IHJ5 

contact, q = 5. Vertical lines – jumps of H due to artifacts. (c) H of IHJ4-IHJ5 bipolar channel, q = 5. (d) Black curve – average H of 8 bipolar 
channels, q = 5. Gray curve – average H of 8 bipolar channels, q = 600. Vertical lines – seizure onset times provided by NIN. Horizontal lines - 

applied detection (Hdt = 0.6) and prediction (Hpt = 0.8) thresholds. (a) – (d) Common estimation settings: sl = 3s, K = 3, lcp = 100, hcp = 450. 
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denoted by the vertical lines. Before each drop there is a 

gradual increase. This long-term trend could not be 

observed using only the short-term recording in Fig. 2. 

Jumps of H appear as a rebound effect after the drops. 

Jumps are followed by gradual decrease in all four 

instances. Slower dynamics are emphasized by the gray 

curve which stands for the average H of the same eight 

bipolar channels but using a 1 hour long moving average 

window. This curve exceeds the applied prediction 

threshold (Hpt = 0.8) 30 minutes and 9 seconds before the 

onset time of the first seizure. The first intersection of the 

black curve with the Hdt = 0.6 detection threshold appears 

25 seconds after the onset of the seizure. Prediction 

intervals and detection delays for the other three seizures 

can be found in Table I. All seizures could be anticipated 

with a mean prediction interval of 59 m 28 s (Standard 

Deviation SD = 28m 53s) and detected with mean 

detection delay of 24.75s (SD = 0.9574s) without false 

positive alarms. Thus, with these particular settings we 

could achieve ideal results considering sensitivity (number 

of predicted or detected seizures divided by number of all 

seizures) and specificity (number of false positive 

prediction or detection alarms divided by total interictal 

time) measures for forecasting and detection as well. 

Drop of H can also be observed during four seizures of 

the patient provided by BEC (Fig. 5). While in FLE we 

observed gradual increase of H before the seizures, in 

MTLE the opposite trend i.e. a gradual decrease is 

noticeable in the preictal states. Similar results were found 

for all seizures of the other patient (provided by NIPN) 

suffering from MTLE. The prediction method introduced 

for FLE should be modified in this case. 

 

4. Conclusion 
 

Long-range dependence of long-term continuous IEEG 

provides useful information about the dynamics of 

epileptic seizures. Drop of H has been observed during all 

17 seizures, regardless the type of epilepsy. This 

phenomenon can allow detection of seizures. In the 

preictal states epilepsy type dependent trend has been 

found. This finding could imply different seizure 

generation mechanisms and propose different models and 

prediction approaches for seizures in FLE and MTLE. 

Statistical validation of the observed phenomena and 

verification of the goodness of the developed 

detection/prediction algorithm by determining 

sensitivity/specificity measures should be carried out 

using a large database. 
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Fig. 5. Patient from BEC, 13h long recording, 4 seizures, H of the TL5 electrode contact placed into seizure generating left hippocampus. 

Estimation settings: sl = 3s, K = 3, lcp = 50, hcp = 199, q = 5. 

TABLE I 

PREDICTION AND DETECTION RESULTS FOR PATIENT FROM NIN 

Seizure number 1 2 3 4 

Detection delay 25s 24s 24s 26s 

Prediction interval 30m 9s 72m 33s 41m 42s 93m 28s 
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