
Spatial-Temporal Level Set Algorithms on CNN-UM

Gábor J. Tornai†, György Cserey‡ and Ádám Rák†

†Faculty of Information Technology, Pázmány Péter Catholic University
Práter u. 50/A, H-1083 Budapest, Hungary

‡Hungarian Academy of Sciences - Pázmány Péter Catholic University - Semmelweis University
Infobionic and Neurobiological Plasticity Research Group

Práter u. 50/a. Budapest, H-1083, Hungary
Email: torgaja@digitus.itk.ppke.hu, cserey@itk.ppke.hu, rakad@digitus.itk.ppke.hu

Abstract—In this paper we propose to describe 2D and
3D spatial-temporal algorithms based on level sets using
the advantages of the local connectivities in the cellular
neural-nonlinear network (CNN). The primary goal of this
paper is to contribute a development and parallel imple-
mentation of fast global level-set algorithms [1] using the
idea of a local interaction based level-set algorithms. Our
CNN algorithms can handle more initial curves which can
fuse or keep distance according to the requirements. This
could be a very good base to achieve fast image segmen-
tation and object detection. Finally 2D and 3D simulation
results are presented.

1. Introduction

The localisation of the object boundaries is a challeng-
ing and important task in many imaging problem such as
segmentation and tracking. The level set method has been
very popular in the recent years. The original idea was in-
troduced by Osher and Sethian [2] in 1988 - how can we
trace the motion of surfaces or curves in a velocity field.
The velocity field can change during the time and can de-
pend on space or the temporary geometry. This method
can handle topological changes automatically meaning all
object can split into two or more sepatare objects and of
course the opposite also happens during the time evolution.
Mainly to solve these problems we must face with partial
differential equations (PDE). The von Neumann architec-
ture can’t dissolve the bottleneck of such computing cost.

The cellular neural-nonlinear network (CNN) [3] has
solved many interesting problems in the past few years.
The massively parallel model’s computing power is far be-
yond the single instruction single data stream (SISD) archi-
tecture in these kind of operations and tasks.

Several researchers and projects succeeded to find sol-
vation for 2D image processing problems using level set
based algorithms implemented on CNN architecture [4, 5].
Nowadays many-processor architectures and the presence
of modern 3D medical imaging systems inspires of the de-
velopment such systems and algorithms, which can process
3D volume data flows in real time. Our aim is to achieve
fast detection of objects in 3D volume flows using level set

based algorithms.
This paper is organized as follows. First a general

overview of the level set methods and the implicit curve
evolutions are given. Then we go into the details of both
2D and 3D spatial-temporal level set algorithms and the
implementation issues. Finally simulation results are pre-
sented.

2. Level sets - Motion of implicitly represented curves
under velocity field - general view

In this section we give a general overview on the basics
of the level set method. The original idea was introduced
in 1988 by Osher and Sethian [2] to track the motion of an
interface, or curve C in Rn mainly in R2 or in R3. For con-
venience, we use the 2D terminology “curve” to denote the
surfaces in Rn, where (n ≥ 2). C bounds an open region Ω,
which could be multiply connected. Our goal is to obtain
the subsequent motion of C under a velocity field ~F [6].
The velocity field can depend on position, time and the ge-
ometry of the interface (it’s normal or it’s mean curvature).

Let’s define a smooth (at least Lipschitz continuous)
function φ(x, t) that represents the curve as the set where
φ(x, t) = 0 and x = (x1, x2...xn).

The level set function φ has the following properties:

φ(x, t) > 0 f or x ∈ Ω (1)
φ(x, t) < 0 f or x < Ω (2)
φ(x, t) = 0 f or x ∈ ∂Ω = C(t) (3)

Thus, the interface is to be captured for all later time,
by merely locating the set C(t) for which φ vanishes. This
trivial statement of great significance because topological
changes such as breaking and merging are well defined and
performed automatically. The motion is analyzed by con-
vecting the φ values (levels) with the velocity field ~F. The
elementary equation is:

∂φ

∂t
+ ~F· ∇φ = 0 (4)

Here ~F is the velocity on the curve, and is arbitrary else-
where. Actually only the normal component of ~F is

2008 International Symposium on Nonlinear Theory and its Applications
NOLTA'08, Budapest, Hungary, September 7-10, 2008

- 696 -

Figure 1: Curve C (solid black line) on regular grid repre-
sented implicitly by Lin and Lout. Changing Lin and Lout the
motion of the curve can be obtained.

needed: FN = ~F· ∇φ
|∇φ|

∂φ

∂t
+ FN |∇φ| (5)

And the time evolution of the curve C is according to the
following equation:

dC(t)
dt

= FN · ~N (6)

Where ~N is the outward normal of the curve C.

2.1. Motion of curves on regular grid

In the level set method the curve C is implicitly repre-
sented as the zero level set of the function φ defined over a
regular grid as shown in Figure 1. Henceforth we choose
the level set function φ to be negative inside the curve and
positive outside. We assume that φ is defined over a domain
D∈ RK (K ≥ 2), without the loss of generality we assume
that the grid is sampled uniformly. Two “neighboring” sets
Lin and Lout can be unambiguously defined on this grid as
follows:

Lin = {x|φ(x) < 0 and ∃y ∈ N(x) that φ(y) > 0} (7)
Lout = {x|φ(x) > 0 and ∃y ∈ N(x) that φ(y) < 0} (8)

Where N(x) is defined as:

N(x) = {y ∈ D|
K∑

k=1

|yk − xk | = 1} ∀x ∈ D (9)

Two additional sets are required: Fin and Fout, they have
the following properties:

Fin = {x ∈ D|φ(x) < 0 ∧ x < Lin} (10)
Fout = {x ∈ D|φ(x) > 0 ∧ x < Lout} (11)

Fin contains the points inside the curve and Fout contains
the points outside the curve but not adjoining curve C. Nat-
urally these sets can be described as follows:

Lin = {x|x ∈ Ω and ∃y ∈ N(x) that y ∈ (D \Ω)} (12)

Lout = {x|x ∈ (D \Ω) and ∃y ∈ Nx that y ∈ Ω} (13)
Fin = {x|x ∈ Ω and ∃y ∈ N(x) that y ∈ Lin} (14)

Fout = {x|x ∈ (D \Ω) and ∃y ∈ N(x) that y ∈ Lout} (15)

By switching grid points from one set to the other (Lin ⇔

Lout) the motion of the curve C can be obtained. Of course
updating Fin and Fout is also necessary. To avoid confusion
we note that the grid points in Lin and Lout are not on curve
C. They are to define the neighborhood of the curve on the
discrete grid and the curve is still represented implicitly by
φ.

2.2. Local method to global method conversion, CNN
concept

In [1, 7] Y. Shi and C. Karl developed a fast algo-
rithm using local rules working on Lin and Lout and they
scanned through the two sets whether there are points to be
switched. Naturally our method works with global opera-
tors and spatial-temporal dynamics. It has 5 phases: 1. ini-
tialization, 2. preprocessing, 3. accretion phase (evolution,
update Fout, eliminate redundant parts from Lin update Fin),
4. diminution phase (evolution, eliminate redundant parts
from Lout update Fout, update Fin), 5. check stopping con-
dition.

Figure 2: The initial sets: Fout, Lout, Lin, Fin

To utilize the advantages laying in the CNN paradigm a
lot of curves have to be on the initial images Fout, Lout, Lin,
Fin. The complexity of the algorithm is O(n) where n is the
size of one dimension of the data.

Figure 3: To maximize the speedup the initial images con-
tain a lot of small curves.

3. 2D spatial-temporal level-set algorithms

In this section we unfold the details of each step in the
implemented/simulated 2D algorithms. We have imple-
mented two subtypes of the algorithm. The first is the “sim-
ple” level set meaning the curves can merge and split as
the velocity field affect on them. The second is a bit more
complex. Let’s assume that we know the number of objects
to be detected and we also have their rough location. Un-
der these circumstances detecting multiple objects is pos-

- 697 -

Figure 4: The main blocks of the kernel

sible meaning the separate initialized objects keep distance
(KD).

We used the simplest templates: threshold, erosion and
dilatation; and the following logics: “and”, “or”, “andnot”.

3.1. Simple algorithm

The simple algorithm is fast but cannot distinguish the
objects. We describe it in template and logic level. We
work on binary images. The algorithm has 5 input image.
Four of the five images are the initial state of the φ more
precisely: Fin, Lin, Lout, Fout. The last one is the real input.

1. initialization and preprocessing: In this part Finmask

and Foutmask are computed. Foutmask is the mutual part
of F and Lout and base of the accretion phase. Foutmask

is the mutual part of ¬F and Lout and base of the
diminution phase.

2. accretion phase: This is one major part of the algo-
rithm. By means of Foutmask new Lout is generated
using dilation and logical operators. Then Foutis up-
dated. Lastly redundant points from Lin are eliminated
and Fin is updated.

3. diminution phase: This is the second major part of
the algorithm. Dilating Finmask and then using logical
operators and the next piece of Lin is obtained. Then
comes Fin afterward redundant points of Lout are elim-
inated lastly Fout is refreshed.

4. stopping conditions: There are two stopping condi-
tion. If either is fulfilled, the algorithm stops. Other-
wise, the algorithm steps again on phase 2.

• F(x) ≤ 0 ∀ x ∈ Lout and F(x) ≥ 0 ∀ x ∈ Lin

• The pre-specified number of iteration is reached.

3.2. KD algorithm

This variant can detect multiple objects at the expense
of the running time. In the case of N separate objects
the algorithm needs 4N piece of the initializing images
(F1

in, F
2
in, . . . F

N
in; L1

in . . . L
N
in; L1

out . . . L
N
out; F1

out . . . F
N
out) and

the running time is N times longer compared to the simple
algorithm (initialize / preprocess to object 1 / one step of
the simple algorithm / preprocess to obj. 2 / one step of the
simple algorithm / . . . / preprocess to object N / one step of
the simple algorithm / check stopping condition).

Figure 5: 1st iteration Fout, Lout, Lin, Fin

Figure 6: 4th iteration Fout, Lout, Lin, Fin

- 698 -

Table 1: iterations required depending on the number of
initial curves

no. of curves 1 2x2 4x4 5x5 8x8 16x16
no. of iterations 31 16 17 15 11 5

4. 3D spatial-temporal level-set algorithms

In this section we describe a 3D CNN model. Here one
cell has 27 neighboring cell, including itself too. The al-
gorithm is the same described in the previous section using
logical operations, erosion and dilation but the major top-
ics are the templates to realize these operations. Here the
templates are 3 dimensional arrays. Using nearest neigh-
borhood the templates have 33 elements according to the
3 spatial dimension (height, width, depth). 3 × 3 × 3 B
template of the 6 connection erosion is:(

0 0 0
0 1 0
0 0 0

) (
0 1 0
1 1 1
0 1 0

) (
0 0 0
0 1 0
0 0 0

)

Figure 7: 3D evolution of our CNN algorithm

5. Simulation results

With our colleguages, we implemented the algorithm in
Simulink using the SimCNN toolbox [8]. The simulation
results are presented in Figure 7-10. It can be seen that in
the case of a lot of small initial curves the transient is much
faster, it lasts only for 5 iteration.

In the case of an image flow, where the frames are highly
correlated, the algorithm after a sort delay, which comes
from the usually big difference between the zero level set
of the function φ and the velocity field (the image to be
detected or segmented), it converges after a few steps com-
pared to the size of the image. In the case of 128x128 image
size after the first image the required number of iterations
are maximum 5.

6. Conclusion

In this paper we presented 2D and 3D level set based
CNN algorithms for multiple object detection. In 3D case,
instead of using 2D layers we applied 3D CNN templates.
Our simulation results show the applicability of the algo-
rithms. In the future we are planning to implement the
algorithm on a GPU (graphical programming unit) where
real time processing can be achieved.

Figure 8: 15th iteration Fout, Lout, Lin, Fin

Figure 9: 31st iteration Fout, Lout, Lin, Fin

Acknowledgments

The Operational Program for Economic Competitive-
ness (GVOP KMA) is gratefully acknowledged. The au-
thors are also grateful to Gergely B. Soós and József Veres
for the discussions and their suggestions.

References

[1] Y. Shi and W. Karl, “A Fast Level Set Method Without
Solving PDEs,” IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing, 2005., vol. 2, 2005.

[2] S. Osher, J. Sethian, and L. R. Center, Fronts Propa-
gating with Curvature Dependent Speed: Algorithms
Based on Hamilton-Jacobi Formulations. National
Aeronautics and Space Administration, 1987.

[3] L. O. Chua and T. Roska, Cellular neural networks and
visual computing, Foundations and applications. Cam-
bridge University Press, 2002.

[4] Gy. Cserey, Cs. Rekeczky, and P. Földesy, “PDE based
histogram modification with embedded morphological
processing of the level-sets,” Journal of Circuits, Sys-
tem and Computers, vol. 12, no. 4, pp. 519–538, 2003.

[5] D. Vilarino and C. Rekeczky, “Pixel-level snakes on
the CNNUM: algorithm design, on-chip implementa-
tion and applications,” Int. Journal of Circuit Theory
and Applications, vol. 33, no. 1, pp. 17–51, 2005.

[6] S. Osher and R. Fedkiw, “Level set methods- An
overview and some recent results,” Journal of Compu-
tational Physics, vol. 169, no. 2, pp. 463–502, 2001.

[7] Y. Shi, Object based dynamic imaging with level set
methods. PhD, Boston Univ. College of Eng., 2005.

[8] G. Soós, A. Rák, J. Veres, and G. Cserey, “GPU pow-
ered CNN simulator (SIMCNN) with graphical flow
based programmability,” in IEEE International Work-
shop on Cellular Neural Networks and their Applica-
tions, (CNNA 2008), 2008. sent.

- 699 -

	Navigation page
	Session at a glance
	Technical program

