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Abstract—Even if the research on multivalued fre-
quency response systems is still in progress and more items
are to be more deeply approached from a theoretical point
of view, in this paper some aspects outlined in a compan-
ion contribution to Nolta 2022 [1] will be focused by intro-
ducing further examples. Moreover, the discretization of
the system is discussed in order to provide a digital imple-
mentation of nonlinear filters with multivalued frequency
response.

1. Introduction

The linear filters theory, based on electrical and elec-
tronic devices, is well known [2] and the huge number of
contributions presented during the last century allows us
to have a dominant theory for the design of such type of
systems. The interest in the future of this topic is until now
increasing. Moreover, even if digital filters design openeda
new age in signal processing, the techniques for designing
linear analog filters is until now a special topic in the VLSI
technology. However, the attention has been devoted only
to linear networks. The problem of conceiving circuits with
more peculiarities with respect to the classic one, charac-
terized only by frequency selectivity, has not been widely
studied in the literature. The theory of nonlinear filtering
and nonlinear techniques in digital signal processing is well
established [3] but is addressed in the area of nonlinear ob-
servers or Kalman filters tasks.

In this communication, starting from the results outlined
in the companion paper presented to Nolta 2022 [1], some
further aspects of the research on multivalued frequency re-
sponse nonlinear filters will be focused. In particular, the
following points will be addressed. The design of the non-
linear part has been approached starting from the choice
of the multivalued function at a frequency ¯ω, but how this
choice can be done? Moreover, may the choice lead to dis-
continuous frequency responses, that are of course unsta-
ble? Moreover, after a numerical selection of the multiple
values that lead to continuous solutions, how to establish
the set that ensure in a certain sense an optimization in the
shape of the filter mask?

The approach presented in the first part of the research

Figure 1: Multivalued frequency responses around ¯ω: pres-
ence of isolated islands (red and green lines) or without un-
stable islands (blue line).

is based on shaping a single frequency mask. In this part,
the multivalued and multiband frequency response is also
discussed. Several examples are included in this part show-
ing also the realization of more multivalued multiband fre-
quency response filters. The realization of the multiband
filters is approached in terms of discrete-time filters. There-
fore a simple and efficient discretization approach is intro-
duced leading to an implementation with low-cost high per-
formance microcontrollers.

2. The islands

Islands in a discontinuous nonlinear frequency response
represent unstable regions that may arise from a not admis-
sible set of multiple values at a given frequency ¯ω. In fact,
in order to start with the multivalued frequency response
filter design, a set ofUk with k = 1, . . . , n must be chosen.
This choice is made by the designer in such a way that at
the frequency ¯ω the conditions discussed in part I [1] on the
imaginary part ofG−1( jω) are satisfied.

Moreover, as shown in the following example, some
pathological choices lead to the response with islands,
while other choices lead to the stable solution represented
in Fig. 1.

The parameterαi that are obtained from the pre-fixed
choice ofUk lead to the solution with island. In the litera-
ture, islands are also called detached resonance curves, i.e.
isolated branches of periodic solutions [4], that have been
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discovered in harmonically excited mechanical systems [5]
with nonlinear damping. In those cases, where a limited
number of parameters is considered, the set of islands can
be analytically defined considering the characteristic equa-
tion of the system (see Part I):

F(αi,U, ω,R) =
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from which the following conditions are derived

∂F
∂U = 0 ∂F

∂ω
= 0 ∂2F

∂U2 , 0 detd2F > 0 (2)

whered2F is the Hessian matrix ofF with respect toU and
ω [6].

Moreover, in the considered study, the previous equa-
tions cannot lead to a direct locus definition, due to the
high number of the parametersαi, therefore a numerical
algorithm is proposed.

Let us consider the algorithm taken into consideration in
the Part I of this study to defineαi. Therefore, a first step
is to define both the order of the multiband filter and then
start with a set of valuesUk that are assumed at the main
frequencyω̄. The choice ofUk must ensure the stability
of the filter, this means that the interest is devoted to the
frequency regions around ¯ω that must be a continuous mul-
tivalued function. The maximum and the minimum values
of Uk can be defined, moreover the aim is to define the set
of Uk where no islands occur. This means that thealphai

must ensure no islands regions. Therefore, we must start by
considering a search algorithm based on Montecarlo tech-
niques and to classify theUk set that leads no island with
that will discarded due to the unstable frequency behavior.

The algorithm is organized along the following steps:

1. start with random values ofUk;

2. perform the frequency response after having com-
puted fromUk the nonlinear filter parameters;

3. the maximumUM and the minimumUm in the se-
lected frequency range are derived;

4. a step∆U = UM−Um
ns

with ns indicating the number of
steps, is defined;

5. for each value ofU decreasing fromUM to Um with
step∆U, the functionF is evaluated for each fre-
quency monitoring its sign: if the sign remains the
same∀ω this means that an island occurs, as schemat-
ically represented in Fig. 2.

Repeating the algorithm more times, the probability of
having island behavior within a statistical distribution of
Uk can be established. Therefore, the algorithm gives us
the possibility of selecting the proper, i.e. stable,Uk set.

(a)

(b)

Figure 2: Algorithm to detect islands: (a) the sign ofF
remains unvaried for allω at given∆U: islands detected;
(b) the sign ofF remains varied for allω at all ∆U: no
islands detected.

The family of suitableUk contains infinite elements,
therefore we have the possibility to select the most suit-
able set. In particular, the empirical experience said us
that around a stable set there are more and more stable sets
that can be appropriately selected by matching the desired
shape of the frequency response. Moreover, another empir-
ical experience said us that an almost regular distribution
of the Uk elements can lead to a no-island frequency re-
sponse. In the case we are considering, i.e. an initialUk set
drawn from a random positive distribution, smaller is vari-
ance more smaller is the probability of islands, moreover
more narrow is the multivalued frequency range around ¯ω.

3. Optimization

Let be the curve obtained by using one of theUk set not
belonging to the island sets. The shape of the curve can
be optimized. This can be done referring on the optimiza-
tion point on which the desired performance are meant to
be met. Let be the example shown in Fig. 3. The fre-
quency fM , corresponding to the maximum frequency in
the multivalued range, can be moved on the right as more
as possible. This allows an increasing of the right part of
the hysteresis. This can be done by using a random search
algorithm, in fact the optimalUk can be searched around a
stable set monitoring the value offM. The same approach
can be used for obtaining the set uk in order to improve the
frequency hysteresis on the left.

– 565 –



Figure 3: Optimization of the multivalued frequency re-
sponse range.

4. The multiband case

With the multiband term, we intend the case in which
a multivalued frequency range occur around two or more
differentω̄i. This item is mainly based on the design of the
linear part of the filter. Therefore, a resonator of the form
G( jω) =

∑m
i=1

ki

(s+ᾱi)(s2+2ξiωn,i s+ω2
n,i)

is adopted.

After having designed in a first phase the nonlinear part
the choice ofG( jω) parameters must be done in order to
obtainℑ = 0 andℜ = αn−1 in the set of the frequency
ω̄i. This can done by choosing theki values. The adopted
procedure can start fixingm − 1 values forki and use the
free parameter for the tuning. The following example with
two ω̄i is reported.

The following two resonators are taken into considera-
tion with the desiredωn,1 = 1 andωn,2 = 3, with ᾱ1 =

ᾱ2 = 0.3 andξ1 = ξ2 = 0.05, andk2 = 20. The condition
under whichℑ(ω̄1) = ℑ(ω̄2) = 0 is derived by tuningk1

so that the value ofℜ(ω̄1) = ℜ(ω̄2). The algorithm must
consider at first the condition on the imaginary part, that is,
the value ofk1 so that it is null, as reported in Fig. 4(a). It
is possible to see that several values can be found so that
the imaginary part is nullified with the samek1 for differ-
entω. Among these possible values, we have to consider
those values ofk1 for whichℜ(ω̄1) = ℜ(ω̄2), therefore the
value ofℜ(ω) for each value ofk1 is reported in Fig. 4(b).
Therefore, the values ofω to be considered are in the range
of multiple solutions forℜ(ω).

The points highlighted in Fig. 4(b) correspond to
ℜ(ω̄1) = ℜ(ω̄2), from which the points highlighted in
Fig. 4(a) can be checking that the in two frequencies ¯ω1 =

1.03 rad/s and ¯ω2 = 3.014 rad/s, the same valuek1 = 1.1
nullifies the imaginary part ofG−1( jω). This is confirmed
by the Nyquist plot ofG−1( jω) obtained withk1 = 1.1 as
reported in the Fig. 5(a).

The multiband multivalued frequency response of the
designed filter is reported in Fig. 5(b).

4.1. Higher order nonlinearity multivalued frequency
response

The generalization to higher order polynomial nonlin-
earities is also straightforward, as it is necessary to choose

(a)

(b)

Figure 4: Design of multiband multivalued frequency re-
sponse nonlinear filters: (a)k1 nullifying the imaginary part
of G−1( jω) at eachω; (b) value of the real part ofG−1( jω)
at eachω for the corresponding gaink1 nullifying the imag-
inary part; (c) Nyquist plot of the designedG−1( jω).
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Figure 5: Design of multiband multivalued frequency re-
sponse nonlinear filters: (a) Nyquist plot of the designed
G−1( jω); (b) multiband multivalued frequency response of
the designed nonlinear filter.
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Figure 6: Design of higher order multivalued frequency re-
sponse nonlinear filters.
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Figure 7: Design of multivalued frequency response non-
linear digital filters.

only the number of multiple values at the frequency ¯ω for
which the imaginary part is nullified. In the Fig. 6, the
multivalued frequency response of a filter with polynomial
nonlinearity of order 21 is reported, ensuring a frequency
response with eleven multiple values at ¯ω. This scenario
allows for the identification of multiple nested paths of in-
crements/decrements in the frequency of the input signal.

5. Discretization of multivalued frequency response
systems

In this section a simple discretization of the continuous-
time system has been performed. In order to show that
the choice of the sampling time duplicates the multivalued
bands, a direct bilinear transformation is adopted, obtain-
ing the frequency response reported in Fig. 7.

6. Conclusions

The study is correlated to the behavior of forced non-
linear systems. Moreover, it is essentially a design tech-
nique for filters that can detect frequency drifts in more
frequency ranges. The paper concerns with the second part
of the multivalued frequency response nonlinear filters de-
sign. Even if more topics will be object of research, in this
contribution, by presenting more examples, various items
are remarked. In particular, the discovery of the unstable
behavior of these systems is studied by using an appropri-
ate algorithm. Moreover, a random search approach is used

to investigate optimization aspects related to the width of
the nested hysteresis windows.

A multiband multivalued frequency response example
has been proposed. Before this study, it did not exist a
general theory for designing this class of nonlinear filters,
since the principles of multiple nonlinear resonance have
been discussed in the literature only from the analysis point
of view and not for design purposes. Even if analytical
approaches and numerical simulations should be better es-
tablished, the design techniques consist in trial and error
approaches. An established theory can be obtained when
more and more experience is gained. Therefore, the de-
signers must use the main circuit principles and appropriate
simulation tools for optimizing their projects.
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