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Abstract–This paper analyses the behaviour of a class 

of MEMS pulsed digital oscillators (PDO) using a non-
linear iterative model. Previous work has shown that in 
these systems the normalised oscillation frequency as a 
function of normalised natural frequency is similar to the 
devil’s staircase fractal. It has also been shown for the 
most basic such oscillator that several limit cycles can 
coexist. This means that the steady state oscillation 
frequency cannot always be uniquely determined by the 
system parameters, without knowing the initial conditions 
as well.  This effect is explored in greater detail in this 
paper, and the investigation is widened to include a 
broader class of PDO topologies. 

 
1. Introduction 

Micro-electro-mechanical (MEMS) resonators have a 
number of advantages in the delivery of high-quality 
stable oscillations, and find use in applications such as 
accelerometers and RF components.  The pulsed-digital 
oscillator (PDO) [1] employs a MEMS resonator in a 
feedback loop familiar from the domain of sigma-delta 
(Σ∆) modulation [2].  The aim of this design is to 
overcome a number of difficulties in the design of large-
signal MEMS oscillators, many of them arising out of the 
nonlinear actuation of standard schemes.   

 
Like the most basic Σ∆ modulator, the PDO involves 

one-bit quantization in the feedback loop along with the 
MEMS resonator, greatly simplifying the design and 
implementation of these systems.  It is not surprising, 
therefore, that the PDO should exhibit nonlinear 
behaviour similar to that observed in Σ∆ modulators [3].  
In particular, it was observed in [1] that the graph of the 
normalised oscillation frequency as a function of 
normalised natural frequency of the resonator contains a 
series of steps, similar to the Devil’s staircase fractal also 
observed in Σ∆ modulators.  Teplinsky and Feely [4] have 
recently undertaken an analysis of the PDO from [1], 
applying methods of nonlinear dynamics to explain the 
appearance of this behaviour.  It was also shown in [4] 
that the steps of the devil’s staircase can overlap, which 
means that multiple oscillations can coexist for the same 
parameters and the initial conditions will determine which 
of them will be observed in practice. 

 
This paper contains a fuller exploration of this 

phenomenon, presenting the extent of overlap of the steps 

for the basic PDO from [1] and also investigating whether 
the same effect is observed in the broader class of PDOs 
studied in [5]. 

 
2 Pulsed Digital Oscillators 

MEMS resonators normally require linear actuation and 
position sensing of the mechanical element. To avoid this, 
in the PDO from [1], shown in Figure 1, the oscillator 
position is sampled and a comparator detects whether it is 
above or below its equilibrium position. The comparator 
output is delayed and fed back to the resonator as a force 
pulse (of uniform magnitude).  We will consider here the 
case where there is one delay in the feedback loop, though 
more delays can also be incorporated. 

 
Figure 1.  The MEMS oscillator from [1]. 

 
The force pulse, ideally a delta function, can take on 

only two values, +F or –F, so the actuation mechanism 
need not be linear. The position detection mechanism can 
also be very basic, since it only needs to detect if the 
oscillator is above and below the equilibrium position [1]. 

 
The position x(t) of the resonator in the oscillator of 

Figure 1 is given by the equation 
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The resonator is assumed to be underdamped, i.e. 
kmb 40 2 << . 
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values xn = x(nTs) and yn = y(nTs+) at the sampling instants 
nTs obey the following 2-dimensional iterative system: 
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FY  represents the instantaneous change in 

velocity due to the force delta. 
 
The oscillations displayed by the MEMS oscillator 

correspond to stable limit cycles of (2).  These limit cycles 
are stable under small perturbations of r and β, and so if 
we plot the rotation number ρ, the average steady-state 
rotation of a trajectory about the origin per sampling 
period, as a function of r we get a sequence of steps of the 
familiar devil’s staircase from [3].  Increasing the level of 
damping increases the tendency for frequencies to lock 
over a larger region, so the steps, particularly those for 
low-denominator ρ, are wider. 

 
Figure 2 plots the rotation number ρ of (2) as a function 

of normalized sampling ratio r for two values of β, 0.05 
and 0.005.  The staircase nature of the relationship is clear, 
particularly for larger values of β.  It is also clear that, 
unlike the classical devil’s staircase, this graph has 
overlapping steps, corresponding to coexisting limit 
cycles.  This clearly limits the ability of the oscillator to 
deliver the required oscillation.  In this system, this effect 
is particularly pronounced for large values of β and of r.   

 
Apart from the instantaneous change in velocity with 

each force pulse the resonator is oscillating freely, so the 
oscillation frequency is close to the natural oscillation 
frequency and the rotation number ρ is close to r. It can be 
seen, even examining only the underlying trend of the 
graph, that larger values of damping lead to greater 
divergence of the oscillation frequency from the natural 
frequency of the resonator.  

 
When multiple oscillations coexist, it is necessary to 

examine their basins of attraction in order to ascertain 

which is most likely to be observed in practice.  Figure 3 
shows the basins of attraction of three limit cycles for β = 
0.05 and r = 0.45.  

 

 
(a) 

 

 
(b) 

Figure 2  Rotation number ρ of (2) as a function of 
normalized sampling ratio r with β = (a) 0.05  (b) 0.005. 
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Figure 3  Basins of attraction for the three coexisting limit 

cycles for β = 0.05 and r = 0.45. The limit cycle with 
successive points marked joined by red lines is approached 
by trajectories starting in the white areas, and has ρ = 5/12.  

Trajectories starting from the grey region approach the limit 
cycle joined with blue lines and those starting from the black 

region approach the limit cycle marked in green. The last 
two both have ρ = 2/5, but the resulting oscillations will have 

different phases. 
 

3.  Double feedback PDO 
In [5], Dominguez et al describe a double-feedback 

PDO topology, which incorporates digital FIR filtering 
into the feedback loop. The aim of this filtering is to 
minimise the effects of damping losses mentioned 
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previously: the divergence of the oscillation frequency 
from the natural frequency of the resonator and the fractal 
nature of that response.  What was not considered in [5] is 
the possibility of coexisting oscillations in this new 
topology, and it is that coexistence that we seek to 
examine here. Two topologies are investigated (see fig 4) 
for cases γ = 0 and γ = 1. 

 

 
Figure 4  Double-feedback PDO topologies. γ =e 0 or 1, Note 

the comparator outputs zero or one here. 
 
For both cases, the underlying trend of the graph is 

closer to the identity line than it is in the 1-delay topology. 
This is countered however by a greater overlap of the 
steps for low r, as shown in Figures 5 and 6.  The basins 
of attraction of the low-denominator cycles can be small, 
as shown in Figure 7, but they do exist, and the system 
can deliver an unwanted oscillation of this kind. 

 

 
(a) 

 
(b) 

Figure 5  Rotation number ρ of the system of Figure 4 with   
γ = 0 as a function of normalized sampling ratio r with  

β = (a) 0.05  (b) 0.005. 
 

 
(a) 

 

 
(b) 

 
 

 
(c) 

Figure 6  Rotation number ρ of the system of Figure 4 with γ 
= 1 as a function of normalized sampling ratio r with  

β = 0.05 (a) 0.005  (b) and a close-up of the plot with β=0.005 
(c). 
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Figure 7  Basins of attraction of the system of Figure 4 with γ 
= 1, with β = 0.005 and r = 0.2.  The white area is the basin of 
attraction of a limit cycle with ρ = 3/14, and the black area is 

the basin of attraction of a limit cycle with ρ = 1.4.    
 

There are, of course, many other possible topologies.  A 
further double-feedback topology is shown in Figure 8, 
where a second delay is introduced into the feedback path. 

 

 
Figure 8; Double feedback topology with two delays. 

 
For this topology, for smaller values of r, the 

relationship between ρ and r is very close to linear, but it 
diverges significantly for larger values, as illustrated in 
figure 9. 
 

 
Figure 9; Topology with two delays for β=0.05. 

 

 
Figure 10; Topology with two delays for β=0.005. 

 
4. Conclusion 

Several PDO topologies have been examined here, with 
particular reference to the divergence of their oscillation 
frequency from their natural frequency, as well as the 
possibility of coexisting oscillations. These aspects of the 
behaviour depend in particular on the level of damping 
and on the normalised natural frequency of the resonator.  

 
The influence of initial conditions on the oscillator 

frequency depends greatly on the feedback topology used. 
The oscillation frequency can also be brought closer to the 
natural resonator frequency by appropriate choice of 
feedback topology. This choice will also depend on the 
levels of damping encountered and on the range of 
frequency output required. For applications where a broad 
range of frequency outputs is required, appropriate 
feedback can be switched in. 
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