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Abstract—Detecting unstable periodic orbits in chaotic
systems based on the time series is a fundamental prob-
lem in nonlinear dynamics, but it often becomes extremely
challenging one. In this study, we propose a new ap-
proach for detecting unstable fixed point using reservoir
computing and stability transformation method. We con-
nects reservoir computing, a well-known machine learning
technique, and stability transformation method, which can
detects unstable periodic orbits in chaotic dynamical sys-
tems, to perform unstable fixed point detection in a data-
driven and model-free process. In this paper, we use an
example of an Hénon map to demonstrate detecting unsta-
ble fixed point and unstable 2-periodic points.

1. Introduction

The study of nonlinear dynamical systems is very im-
portant not only as a fundamental problem but also from
an engineering point of view. Unstable oscillatory phe-
nomena that occur in nonlinear dynamics are called chaos,
and in particular, nonlinear dynamical systems that exhibit
chaos are called chaotic dynamical system. The Unstable
Periodic Orbits(abbr. UPOs) inherent in chaotic attractors
are an important dynamical property of chaotic dynamical
systems, and many features of the dynamics can be calcu-
lated, such as Lyapunov exponents, fractal dimension, and
attractor entropy [1, 2]. Because chaotic behavior exists
in a wide variety of dynamical systems, periodic orbit the-
ory has many applications and is relevant to many differ-
ent fields. However, finding UPOs from chaotic attractors
is difficult, both numerically and experimentally, even for
simple dynamical systems, due to their instability. In par-
ticular, when the dynamics of the dynamical system and the
location of the UPOs are unknown, the detection of UPOs
becomes even more difficult.

In contrast, a stability transformation method (abbr.
STM) [3, 4] called has been proposed to search for UPOs
whose positions are unknown. The basic idea of this
method is to transform a discrete chaotic dynamical sys-
tem into a new dynamical system in which the UPOs are
changed from unstable to stable without changing their spa-
tial positions. Periodic orbits can be detected by iterating
the transformed dynamical system.
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In our research, we proposed a chaos control method
based on STM, and demonstrated its effectiveness by ap-
plying it to a simple chaos generator circuit [5]. This
method is relatively simple and can stabilize UPOs with
unknown position information without constraints such as
the odd number limitation [6] in delayed feedback control.
Furthermore, We have also proposed an improved method
for robustly stabilizing high-periodic orbits [7], and an im-
proved method for stabilizing UPOs in high-dimensional
and continuous-time systems [8]. However, this control
method and stability transformation method require infor-
mation on the dynamics of the chaotic dynamical system,
nd cannot detect and control UPOs using only time series
information of the dynamical system.

In this paper, we propose a Unstable Fixed Point (abbr.
UFP) detection method using Reservoir Computing (abbr.
RC) and stability transformation method. The proposed
method uses RC to recover a chaotic dynamical system
from time series information, and applies a chaos control
method based on STM to the recovered system to detect
UFP in the recovered system. This method does not re-
quire information on the location of the UFP or the state of
the dynamical system. The method can also be applied to a
composite map to detect UPOs.

In Sect. 2, system identification by RC is described, and
the proposed system is constructed by combining RC and
STM. In Sect. 3, we use the Hénon map as an example to
detect UFP and unstable 2-period points. Finally, conclu-
sions and future work are given in Sect. 4.

2. Proposed method: RC and STM are used to con-
struct the proposed system

2.1. Restoration of dynamical systems using Reservoir
Computing

First, consider the following discrete chaotic system,

x(n + 1) = Fx(n), (1)

where n is the discrete time, x(n) is the state variable of the
system, and F is the discrete-time chaos map. Our goal is
to search for UPOs embedded in the chaotic attractor of this
system without knowing the specific state of the system (1)
or the location of the UPOs.
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In this paper, we use the following equation, RC[10],
which is expressed as follows,

r(n + 1) = (1 − ρ) r(n) + ρ tanh
(
Winu(n) +Wr r(n)

)
, (2)

o(n + 1) =Wout r(n + 1), (3)

where r(n) = [r1(n), · · · , rN(n)]T ∈ RN×1 is the reservoir
state formed by N neurons at time n, u(n) ∈ R is the input
signal and o(n) ∈ R is the output. Win ∈ RN×1 is the input
weight matrix, Wr ∈ RN×N is the joint weights among neu-
rons in the reservoir layer, Wout ∈ R1×N is the output weight
matrix. The tanh(−) is an element-wise nonlinear function
called the activation function. Win ∈ RN×1 and Wr ∈ RN×N

are determined randomly and Wout ∈ R1×N are determined
by learning with a teacher signal. The leak rate ρ ∈ (0, 1] is
the rate at which the reservoir forgets past information. A
block diagram of this RC is shown in Fig. 1.
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Figure 1: Block diagram of RC used in this paper.

This section describes system restoration using this RC.
The basis of system restoration is 1-step prediction, and
the goal is to learn the correspondence between x(n) and
x(n + 1) in (1). In other words, Wout is learned using a
teacher signal, and if the output is o(n + 1) ≃ x(n + 1)
when the RC input is u(n) = x(n), the system has been
restored. The training data used for system restoration
should be time series data that contain sufficient attractor
information and omit transient states. When the number
of steps in the training data is T , the input signal sequence
U = [u(1), u(2), · · · , u(T )], the driven reservoir state se-
quence R = [r(1), r(2), · · · , r(T )], the teacher signal se-
quence Yteach =

[
yteach(1), yteach(2), · · · , yteach(T )

]
, the out-

put weights are learned by linear regression using as

Wout = Yteacher RT (RRT )−1. (4)

The system restored by the above RC can be described
by

r(n + 1) = Fr(r(n))

= (1 − ρ) r(n) + ρ tanh
(
WinWout r(n) +Wr r(n)

)
.

(5)

The output of (5) is o(n) =Wout r(n). The block diagram of
the restored system (5) is shown in Fig. 2.

2.2. Conbination of RC and STM

2.2.1. Detect for UFP

Next, we describe a proposed method that combines the
above RC and STM to detect a UFP for the identified sys-
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Figure 2: Block diagram of a system restored by RC.

tem. In this method, by applying the chaos control meth-
ods [9] to (5), an Reservoir Control System with a stable
fixed point at the same position as the UFP of (5) is con-
structed, and UFP are searched by driving the system. The
dynamics of Reservoir Control System can be described as
follows, r(n + 1) = Fr(v(n + 1)),

v(n + 1) = r(n) − K (r(n) − v(n)) ,
(6)

where v(n) = [v1(n), · · · , vN(n)]T ∈ RN×1 is the internal
state of the system at time n and K ∈ RN×N is the control
gain matrix. The output of Reservoir Control System (6) is
o(n) = Wout r(n). Figure 3 illustrates the block diagram of
(6). The Z−1 in the Fig. 3 is a delay unit.
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Figure 3: Block diagram of Reservoir Control System for
UFP detection.

Then, the control gain K for stabilizing the UFP is de-
rived. From the relation r(n) = Fr(v(n)), we can reduce the
Eq. (6) to the following 1-D dynamics:

v(n + 1) = (I − K)Fr(v(n)) + Kv(n). (7)

The local linearized system of (7) in the reservoir state at
fixed point r f p is given by

δv(n + 1) = Aδv(n), (8)

where δv(n) ≡ v(n)− r f p represents the small displacement
around r f p. The square matrix A is the slope of Fr around
r f p and is written as following,

A =
∂v(n + 1)
∂v(n)

∣∣∣∣∣
v(n)=r f p

= (I − K)DFr(r f p) + K, (9)

where, I is a unitary matrix and DFr(r f p) in the formula is
the Jacobi matrix in r f p of Fr, namely,

DFr(r f p) =
∂Fr(r(n))
∂r(n)

∣∣∣∣∣∣
r(n)=r f p

=
∂r(n + 1)
∂r(n)

∣∣∣∣∣
r(n)=r f p

. (10)
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The fixed point of (7) is stable if the absolute value of all
eigenvalues of A is less than 1. In particular, if the control
gain K is set to

K = −(I − DFr(r f p))−1DFr(r f p), (11)

the fixed point of (7) becomes super-stable because all
eigenvalues of A are zero.

2.2.2. Detect for UPOs

We will now explain how to detect unstable l-periodic
points using the proposed method. A periodic point pi can
be expressed as pi = F l(pi). Since F l is an l-fold composite
map of F and a fixed point p f of F can be expressed as p f =

F(p f ), pi corresponds to a fixed point of F l. Therefore,
stabilizing the fixed point of the l-composite map of the
restored system can also be applied to stabilize l-periodic
points. The detection of UPOs in the restoration system is
performed by the Reservoir Control System in Fig. 4. The
dynamics of this system is described byr(n + 1) = Fr(v(n + 1)),

v(n + 1) = r(n) − K (r(n) − v(n)) ,
for n = kl,r(n + 1) = Fr(r(n)),

v(n + 1) = v(n),
for n , kl.

(12)

The output of this system (13) is o(n) =Wout r(n). Here, fo-
cusing on the state r(kl), v(kl) at n = kl, a two-dimensional
map from (r(kl), v(kl)) to (r((k+1)l), v((k+1)l)) is given byr((k + 1)l) = F l

r(v((k + 1)l)),
v((k + 1)l) = r(kl) − K (r(kl) − v(kl)) ,

(13)

where k is any positive integer. Similarly to (8), the follow-
ing 1-D return map can be derived.

v((k + 1)l) = (I − K)F l
r(v(kl)) + Kv(kl). (14)

In the same way as in Sect. 2, local linearization of (14)
leads to the following:

Al =
∂F l

r(r(n))
∂r(n)

∣∣∣∣∣∣
r(n)=rlpp

= (I − K)DF l
r(rlpp) + K, (15)
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Figure 4: Block diagram of Reservoir Control System for
unstable l-periodic orbits detection.

where, rlpp is the reservoir state at l-periodic points and
DF l

r(rlpp) in the formula is the Jacobi matrix in rlpp of F l
r,

namely,

DF l
r(rlpp) =

∂F l
r(r(n))
∂r(n)

∣∣∣∣∣∣
r(n)=rlpp

=
∂r(n + l)
∂r(n)

∣∣∣∣∣
r(n)=rlpp

. (16)

The fixed point of (14) is stable if the absolute value of all
eigenvalues of Al is less than 1. In particular, if the control
gain K is set to

K = −
(
I − DF l

r(rlpp)
)−1

DF l
r(rlpp), (17)

the fixed point of (14) becomes super-stable because all
eigenvalues of Al are zero.

3. Example of detecting UPOs:Hénon map

Using Hénon map [11] as an example, we use the pro-
posed method to detect UFP and unstable 2-periodic points.
The Hénon map is written byx(n + 1) = 1 − 1.4x(n)2 + y(n) (x(0) = 0.7),

y(n + 1) = 0.3x(n) (y(0) = 0.21).
(18)

In this paper, we search for an UFP (x f ) and an unstable
2-periodic point (xp1, xp2) of x(n) of the Hénon map. Figure
5 shows the attractor, x f and (xp1, xp2) of x(n) of the Hénon
map. For the restoration of the Hénon map using RC, the
number of training steps is set to T = 8000, the input sig-
nal sequence U = [x(100), x(101), · · · , x(8100)] without
transient states of the Hénon map and the teacher signal
sequence Yteach = [x(101), x(102), · · · , x(8101)]. Other pa-
rameters used in this paper are shown in Tab. 1.
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Figure 5: The attractor of x(n) of the Hénon map and the
UFP (x f ), the unstable 2-periodic point (xp1, xp2).

Figure 6 shows the UFP and unstable 2-periodic points
detected by the proposed method. Figure 6(a) and (b)
shows the detected UFP and the time series and attractor
of the output o(n) of (6). Figure 6(c) and (d) is the de-
tected unstable 2-period point, and shows the time series
and attractor of the output o(n) of (13). The control gain
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Table 1: The parameters used in this paper.

Parameters Value
number of neurons N 500

leak rate ρ 0.8
value of Win binary random with ±0.5
value of Wr standard normal distribution

spectral radius of Wr 0.9999

K are set to (11) and (17), which are super-stable condi-
tions. Detected UPOs are consistent with the UPOs of the
Hénon map, confirming that they are converted to stable or-
bits. Reservoir state at fixed point r f p and Reservoir state
at 2-periodic points r2pp are the r(n + 1) that satisfied the
following Eq. 19 when the restored system (5) was driven.

N∑
i=1

|ri(n + 1) − ri(n)| < ϵ (ϵ = 5) for r f p,

N∑
i=1

|ri(n + 1) − ri(n − 1)| < ϵ (ϵ = 40) for r2pp.

(19)
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Figure 6: UPOs detected by the proposed method. The
black dots are x(n) of the Hénon map. (a)(b) Fixed point,
(c)(d) 2-periodic points

4. Conclusion

In this paper, we proposed a new approach for detecting
UFP using RC and STM. Furthermore, we show that the

proposed method can detect arbitrary periodic UPOs by ap-
plying it to fixed point of a composite map. The advantage
of proposed method is that it does not require prior chaotic
system information or location information of fixed point,
and only time series information of the system is used to
search for UFP and UPOs. Using the proposed method, we
detected UFP and unstable 2-period points of the Hénon
map.

One of the future problems is to detect UFP and UPOs in
continuous-time and complex systems using the proposed
method. In principle, our method can be applied to any sys-
tem, but it needs to be extended, especially for continuous-
time systems.
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