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Abstract—In this paper, we are concerned with
the following linear programming problem:

Maximize ctx, subject to Ax 5 b and x = 0,

where A ∈ Fm×n, b ∈ Fm and c, x ∈ Fn. Here, F is
a set of floating point numbers.

The aim of this paper is to propose a numerical
method of including an optimum point provided
that a good approximation of an optimum point is
given.

1. Introduction

In this paper, we are concerned with the follow-
ing linear programming problem:

Maximize ctx, subject to Ax 5 b and x = 0, (1)

where A ∈ Fm×n, b ∈ Fm and c, x ∈ Fn. Here, F
is a set of floating point numbers. A dual problem
for (1) is given by

Minimize bty, subject to Aty = c and y = 0, (2)

where y ∈ Fm.
The aim of this paper is to propose a numerical

method of including an optimum point of (1) pro-
vided that a good approximation of an optimum
point is given.

2. Verification Method

In this paper, for two vectors u, v with the same
dimension, uv and u/v denote the vectors of the
same dimension with components uivi and ui/vi,
respectively. Then, (1) and (2) are equivalent to
the following complimentarity problem

f(z) =
(

x(Aty − c)
y(b − Ax)

)
= 0 (3)

subject to

x = 0, y = 0, b − Ax = 0 and Aty − c = 0, (4)

where z = (xt, yt)t. The centered path of (3) is
defined by

f(z) =
(

x(Aty − c)
y(b − Ax)

)
= γe, (5)

where e ∈ Rm+n with all elements being 1. The
constant γ is defined by

γ =
∥f(z)∥1

m + n
=

(bty − ctx)
m + n

. (6)

Namely, γ is the duality gap of the problem if z is
a feasible point.

The Fréchet derivative f ′(z) is given by

f ′(z) =
(

[Aty − c] [x]At

−[y]A [b − Ax]

)
, (7)

where for a vector x = (x1, x2, · · · , xn)t, [x] denotes
diag(x1, x2, · · · , xn). At a given approximate op-
timum point z, the Newton direction dn and the
centered direction dc are defined by

f ′(z)dn = −
(

x(Aty − c)
y(b − Ax)

)
(8)

and

f ′(z)dc = −
(

x(Aty − c)
y(b − Ax)

)
+ γe, (9)

respectively.
In the method we shall propose, first a feasible

point of (3) is searched for a searching direction,
which is a linear combination of dn and dc, based on
the guiding cone method or the penelalized norm
method [1]. Here, we assume that we can find an
interior point z, which is a good approximation of
an optimum point. Then, the second step of the
method is to check conditions of the following the-
orem at the point z:

Theorem 1 Let z ∈ Rm+n be an interior point,
namely a point satisfying (4) with inequality con-
dition. Let further constants α and ω be defined
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by the ineqalities α = ∥f ′(z)−1∥∞∥f(z)∥∞ and
ω = 2(∥A∥∞ + ∥A∥1)∥f ′(z)−1∥∞, respectively. If

αω 5 1
4
, (10)

there exists an optimal point z∗ = (x∗t, y∗t)t ∈
Rm+n, ı.e., a point satisfying (3) and (4), enjoying

∥z∗ − z∥∞ 5 ρ. (11)

Here

ρ =
1 −

√
1 − 3αω

ω
. (12)

Before entering proof of Theorem 1, we note that
the half assertion of Theorem 1 can be derived from
the following Kantorovich theorem for the Newton
method:

Theorem 2 (Kantorovich’s Theorem) Let f
be defined on a ball B(z, ρ̂) = {∥z′ − z∥∞ 5 ρ̂}
with z ∈ Rm+n and ρ̂ > 0. Let further f ′(z) be
nonsingular and enjoying

α′ = ∥f ′(z)−1f(z)∥∞ (13)

for a certain positive α′. Furthermore we assume
that f satisfies

∥f ′(z)−1(f ′(z′) − f ′(z′′))∥∞
5 ω′∥z′ − z′′∥∞ for z′, z′′ ∈ B(z, ρ̂) (14)

with a certain positive constant ω′. If

α′ω′ 5 1
2
, (15)

and

ρ′ =
1 −

√
1 − 2α′ω′

ω′ 5 ρ̂. (16)

there exists a point z∗ = (x∗t, y∗t)t ∈ B(z, ρ′) sat-
isfying (3). The solution z∗ of (3) is unique in
B(z, ρ′).

Proof of Theorem 1 First, we note that f is
defined on Rm+n. If we put α′ = 1.5α, then

∥f ′(z)−1f(z)∥∞ 5 ∥f ′(z)−1∥∞∥f(z)∥∞
5 α

< α′. (17)

Then, it is further noted that

f ′(z′) − f ′(z′′)

=
(

[Aty′ − c] [x′]At

−[y′]A [b − Ax′]

)
−

(
[Aty′′ − c] [x′′]At

−[y′′]A [b − Ax′′]

)
=

(
[At(y′ − y′′)] [x′ − x′′]At

−[y′ − y′′]A [b − A(x′ − x′′)]

)
.(18)

It follows from this

∥f ′(z′) − f ′(z′′)∥∞
= ∥At(y′ − y′′)∥∞ + ∥(x′ − x′′)At∥∞

+∥[y′ − y′′]A∥∞ + ∥A[x′ − x′′]∥∞
= ∥At∥∞(∥x′ − x′′∥∞ + ∥y′ − y′′∥∞)

+∥A∥∞(∥x′ − x′′∥∞ + ∥y′ − y′′∥∞)
5 2(∥A∥∞ + ∥A∥1)∥z′ − z′′∥∞. (19)

Hence, we can use ω in Theorem 1 as ω′ in Theorem
2 and

α′ω′ = 1.5αω 5 3/8 < 1/2 (20)

holds. Furthermore, ρ′ coincides with ρ. Thus,
from the Kantorovich theorem (Theorem 2) it is
seen that there exists a solution z∗ = (x∗t, y∗t)t ∈
B = {z′ |∥z′ − z∥∞ 5 ρ} satisfying (3). Further,
the Kantorovich theorem states that z∗ is unique
solution of (3) in the closed ball B.

Next, we show that z∗ is feasible, i.e., it satisfies
the inequality conditions (4). Let us consider a
solution curve of the following continuous Newton
method starting from a given feasible point z:

dz(t)
dt

= −f ′(z(t))−1f(z(t)) with z(0) = z. (21)

The fundamental existence theorem for differential
equations states that the solution curve z(t) exists
for t ∈ [0,M) for a certain positive constant M .

Suppose T 5 M be the smallest value of T such
that z(T ) is on the boundary of the ball B. Then

∥z − z(T )∥∞ 5
∫ T

0

∥∥∥∥dz(t)
dt

∥∥∥∥
∞

dt < k∥f(z)∥∞.

(22)
Here, k is defined by

k = max
z′∈B

∥f ′(z′)−1∥∞. (23)

This result is derived in [2]. In fact, z(t) satisfies

df(z(t))
dt

= −f(z(t)) with z(0) = z. (24)

Thus, f(z(t)) = f(z)e−t holds. Hence, we have∥∥∥∥dz(t)
dt

∥∥∥∥
∞

5 ∥f ′(z(t))−1∥∞∥f(z(t))∥∞

5 k∥f(z)∥∞e−t, (25)

which gives∫ T

0

∥∥∥∥dz(t)
dt

∥∥∥∥
∞

dt 5 k∥f(z)∥∞(1 − e−T )

< k∥f(z)∥∞. (26)

Furthermore, f(z(t)) = f(z)e−t implies z(t)
starting with an interior point remains to be an
interior point for t ∈ [0, M).
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We note that for z′ ∈ B

∥f ′(z)−1(f ′(z) − f ′(z′))∥∞ 5 ω∥z − z′∥∞ (27)

holds. We note also that (10) implies

ωρ < 1. (28)

Therefore, from (27), it follows that

k = max
z′∈B

∥f ′(z′)−1∥∞

5 max
z′∈B

∥f ′(z)−1∥∞
1 − ∥I − f ′(z)−1f ′(z′)∥∞

= max
z′∈B

∥f ′(z)−1∥∞
1 − ∥f ′(z)−1(f ′(z) − f ′(z′))∥∞

5 max
z′∈B

∥f ′(z)−1∥∞
1 − ω∥z − z′∥∞

5 ∥f ′(z)−1∥∞
1 − ωρ

. (29)

Thus, we have

k∥f(z)∥∞ 5 ∥f ′(z)−1∥∞∥f(z)∥∞
1 − ωρ

5 α

1 − ωρ
. (30)

Then, we show that

α

1 − ωρ
5 ρ (31)

holds. In fact, to prove (31) it is enough to show

α√
1 − 3αω

5 1 −
√

1 − 3αω

ω
(32)

which is equivalent to

1 − 2αω 5
√

1 − 3αω. (33)

This is further equivalent to

4αω 5 1 (34)

which is now obvious because αω 5 1/4. Thus (31)
is shown.

The inequalities (22), (30) and (31) imply

∥z − z(T )∥∞ < ρ (35)

which contradicts the fact that z(T ) is on the
boundary of B. Therefore, there exists no such
T and the solution curve is contained in the inte-
rior of the ball B. There is no singularity of the
right hand side of (21) in B. By the elementary
theory of differential equation, the solution can be
prolonged to the interval [0,∞), i.e., M = ∞ and
it converges to z∗ as t tends to ∞. In fact, let z∗∗

be a point in the limit set, which is contained in

B, of the solution curve. Then z∗∗ is a solution of
(3). By the uniqueness of the solution of (3) in B,
it is identical to z∗. Therfore, the solution curve
converges to z∗ as t tends to ∞.

Since the solution curve is contained in the fea-
sible set, the limit point z∗ is also a feasible point.

(QED)

3. Numerical Example

In this section, let us consider the following sim-
ple linear programming problem:

Maximize ctx, subject to Ax 5 b and x = 0,
(36)

where ct = (300, 300, 500),

A =

 150 100 100
1 2 1
0 0 150

 (37)

and bt = (3000, 40, 1200). In this case, we have a
feasible solution

x =

 5.9999999999999973
13.000000000000004
8.0000000000000000

 ,

y =

 1.5000000000000000
75.000000000000000
1.8333333333333335

 . (38)

For this feasible point, we have

αω < 1.64 × 10−11. (39)

Thus, there exists an optimum solution of (36) in
the ball centered at z = (xt, yt)t with a radius

ρ = 1.45 × 10−13. (40)

The following is a program of executing verified
computation. We have used Scilab on Windows XP
with the core two duo Intel processor.

format(’e’,23);
init_round();
c=[300;300;500];b=[3000;40;1200];
A=[150,100,100;1,2,1;0,0,150];
[x,y,h,rho,d,p,pl,dl]=vlinpro(c,A,b)

Here, we have used the following function:

function [x,y,h,rho,t_d,t_p,pl,dl]=
vlinpro(c,A,b)

// Maximize c^tx, subject to Ax<=b and x>=0
mc=-c;[m,n]=size(A);
q=zeros(n,1);qq=zeros(m,1);
[x,l,f]=linpro(mc,A,b,q,[]);
[y,ly,fy]=linpro(b,-A’,-c,qq,[]);
F=[diag(A’*y-c),diag(x)*A’;
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diag(-y)*A,diag(b-A*x)];
r_z=-[x.*(A’*(y)-c);y.*(b-A*x)];
d_n=F\r_z;
ga=1e-14;d_c=F\(r_z+ga*ones(m+n,1));
d=(d_n+d_c)/2;x=x+d(1:n);y=y+d(n+1:m+n);
R=inv(F);
down();
bmAx_l=b-A*x;Aymc_l=A’*(y)-c;
dxA_l=diag(x)*A’;dyA_l=diag(-y)*A;
up();
bmAx_u=b-A*x;Aymc_u=A’*(y)-c;
dxA_u=diag(x)*A’;dyA_u=diag(-y)*A;
bmAx_c=(bmAx_l+bmAx_u)/2;
Aymc_c=(Aymc_l+Aymc_u)/2;
bmAx_r=bmAx_c-bmAx_l;
Aymc_r=Aymc_c-Aymc_l;
down();
r1_l=x.*Aymc_c-abs(x).*Aymc_r;
r2_l=(-y).*bmAx_c-abs(-y).*bmAx_r;
up();
r1_u=x.*Aymc_c+abs(x).*Aymc_r;
r2_u=(y).*bmAx_c+abs(y).*bmAx_r;
near();
r=[max(abs(r1_l),abs(r1_u));

max(abs(r2_l),abs(r2_u))];
F_l=[diag(Aymc_l),dxA_l;dyA_l,diag(bmAx_l)];
F_u=[diag(Aymc_u),dxA_u;dyA_u,diag(bmAx_u)];
up();
F_c=(F_l+F_u)/2;F_r=F_c-F_l;
RFmI_u=R*F_c+abs(R)*F_r-eye(m+n,m+n);
down();
RFmI_l=R*F_c-abs(R)*F_r-eye(m+n,m+n);
up();
FF=max(abs(RFmI_l),abs(RFmI_u));
RFmI=norm(FF,’inf’);
down();
d=1-RFmI;
up();
niF=norm(R,’inf’)/d;nr=norm(r,’inf’);
alpha=niF*nr;
omega=2*(norm(A,’inf’)+norm(A,1))*niF;
h=alpha*omega;rho=(1-sqrt(1-3*h))/omega;
t_d=b’*y;
down();
t_p=c’*x;pl=b-A*x;dl=A’*y-c;
near();

Moreover, rounding modes of double precision
floating point numbers are changed by the following
functions:

function init_round()
link(’up.dll’,’up’,’C’);
link(’down.dll’,’down’,’C’);
link(’near.dll’,’nearest’,’C’);

function up()
call(’up’);

function down()

call(’down’);
function near()

call(’nearest’);

Here, the source code of making the near.dll is
give by

#include <float.h>
unsigned int _controlfp(unsigned int new,

unsigned int mask);
void nearest(void) {

_controlfp(_RC_NEAR,_MCW_RC);
}

The source codes for up.dll and down.ll are ob-
tained by replacing the word _RC_NEAR by _RC_UP
and _RC_DOWN, respectively.

The following is the result of execution:

dl =
0.0000000000000000D+00
0.0000000000000000D+00
0.0000000000000000D+00

pl =
4.5474735088646412D-13
0.0000000000000000D+00
0.0000000000000000D+00

p =
9.7000000000000000D+03

d =
9.7000000000000018D+03

rho =
1.4429449920498498D-13

h =
1.6306549360861618D-11

y =
1.5000000000000000D+00
7.5000000000000000D+01
1.8333333333333335D+00

x =
5.9999999999999973D+00
1.3000000000000004D+01
8.0000000000000000D+00
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