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Abstract—In this talk we present several problems
of optimization coming from computational geometry,
statistics and wireless networks which either have been
solved by exact methods or whose numerical resolution
have been validated by exact computation.

1. Introduction

It is almost immediate that many problems of opti-
mization may theoretically solved through polynomial
system solving. For example, the minimum of a mul-
tivariate polynomial function may be obtained as a
common zero of the partial derivatives, if it is attained
for finite values of the variables. In practice, such an
approach was hopeless because of the lack of efficient
tools for solving polynomial systems.

The availability of an efficient software for solv-
ing polynomial systems (Function RootFinding
[Isolate] of Maple 11) changes the situation. It
should be noted that the applications that are de-
scribed below are anterior to Maple 11, but have used
the same software as this function Isolate, namely
fgb and rs1.

The fact that polynomial system solving has a high
complexity (at least exponential in the number of vari-
ables) has the consequence that it may certainly not be
useful when the number of variables is high or when
one knows that the cost function has only one local
minimum. On the other hand we know of several op-
timization problems coming from applications which
have been solved in an acceptable computational cost
and which seem difficult for purely numerical methods.

The aim of this talk is to present these problems
and to classify them by the kind of the optimization
problem which they involve.

In this paper, an optimization problem consists in
a cost function P to minimize and several sets of
constraints, possibly empty: a set of equational con-
straints {f1 = 0, . . . , fk = 0}, a set of strict inequali-
ties {g1 > 0, . . . , gl > 0} and a set of large inequalities
{h1 ≥ 0, . . . , hm ≥ 0}. We suppose that the fi, the
gi and the hi are multivariate polynomials. Except in
Section 2, we suppose also that the cost function is

1Available at http://fgbrs.lip6.fr/salsa/Software/

polynomial.
For each large inequality hi ≥ 0 the problem may

be split in two sub problems where hi ≥ 0 is replaced
either by the large inequality hi > 0 or by the equation
hi = 0. Unless if the number m of large inequalities
is very low, this introduces a number of cases which
makes impossible the computation. Therefore, with
the present state of the art, exact computation is of
no help for problems with several large inequalities.

2. Reducing the equational constraints

As the fi are polynomials, the equational constraints
of an optimization problem define an algebraic variety,
on which the minimum of the cost function is to be
found. Without information on the structure of this
variety (especially on its singularities) the classical nu-
merical methods may fail to find the minimum of the
cost function.

A classical theorem of algebraic asserts that an ir-
reducible variety is birationally equivalent to a hyper-
surface. This means that the coordinates of almost all
points of the variety are rational functions of the zeros
of a single univariate polynomial. The condition that
the variety is irreducible is not very strong, as in most
applications the variety of the constraints is irreducible
or easily decomposed in irreducible components.

Gröbner bases allow to compute such a rational rep-
resentation of the points of a variety, and this re-
duces an optimization problem with equational con-
straints to another problem with only one constraint.
Moreover, if algebraic functions are allowed for the
cost function, one may “solve” this remaining con-
straint with respect to one of its variable and substi-
tute the solution in the cost function to obtain an un-
constrained optimization problem which may be solved
by the usual numerical methods.

This approach has been used in [2] to design filter
banks for 2D image compression. A witness of the
efficiency of this approach is that some input systems
of equations have a size higher than 60 Mb.

3. Minimum of a polynomial function

Finding the minimum of a multivariate function is
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the basic problem of global optimization. For a poly-
nomial function, the problem is clearly very difficult,
as the number of local extremums may be exponen-
tial in the number of variables. Another difficulty
comes from the fact that the minimum is not necessary
reached, if the function tends to its minimum when
some variables tend to infinity.

In the most frequent case where the minimum is
reached, it is reached at a critical point of the cost
function, i.e. at a zero of its gradient. Thus finding
the minimum may be done through polynomial system
solving: it suffices to compute the common zeros of the
partial derivatives of the cost function and to look at
the values of the cost function at these zeros.

For being practicable, this approach needs an ef-
ficient polynomial system solver. Even with such a
solver, it is not evident that optimizing through poly-
nomial system solving may be competitive with the
usual numerical methods. In fact, the complexity of
polynomial system solving is at least polynomial in
the number of complex roots of the system, which is
itself exponential in the number of variables. On the
other hand, the complexity of the numerical methods
depend strongly on the number of local minimums of
the cost functions, which may be of the same order
as the number of complex zeros of the gradient of the
cost function.

Thus a theoretical comparison seems very difficult
between numerical and algebraic methods to find the
minimum of a polynomial function. The best which
can be done is to compare them on difficult problems
coming from applications. In fact, there is difficult to
guess the time needed to solve a particular polynomial
system by extrapolation from the time needed by ran-
dom examples. In particular, it seems that random
examples are usually much more difficult than the ex-
plicit systems coming from applications. In this paper
we try to show, by some challenge examples, that al-
gebraic methods may effectively be competitive.

A problem which is strongly related to the global
minimum of a function is the proof that a polynomial
function is always positive (its minimum is positive)
or never negative. As for every computational proof,
if floating points are used, the computation has to be
completed by a certification of the result.

I have encountered this kind of problems when
studying the Voronoi diagram of lines in the 3D space
([1]): Given three lines in the 3D space, their trisector
is the curve of the points which are at the same dis-
tance of the three lines. If the lines do not intersect nor
are parallel to the same plane, the trisector is a quar-
tic which is generically smooth and irreducible, but
may be decomposed into a cubic and a line for some
configurations. These configurations are characterized
by the vanishing of a polynomial P of degree four in
five variables, which has more than 300 monomials.

To understand what are these special configurations,
the first thing to decide is if they are a hypersurface
(dimension 4) in the space of the triplets of lines or
if they belong to a variety of lower dimension (in fact
dimension 3). This means that all the real points of
the hypersurface defined by P are singular and thus
that P is either never negative or never positive.

This is effectively the case and we could prove it
using the software raglib of Mohab Safey-el-Din2.
This software were primarily designed to find at least
a point in every connected component of a semi-
algebraic set. It has been recently extended to find
the global minimum of any multivariate polynomial
(even if this minimum is not reached for a finite value
of the variables). It is not the place to describe here
how it works.

4. Proving global convergence of a numerical
optimization process

We have seen in the preceding section that the al-
gebraic approach may be competitive when the cost
function has many local minimums. On the other
hand, it is clear that the classical numerical methods
are much faster if there is no other local minimum than
the global one, but they are usually unable to verify
it.

Thus when the cost function depends on parameters,
it useful to determine once for all the values of the
parameters for which the global minimum is the only
local minimum, i.e. the values of the parameters for
which a numerical process converges globally.

This may be done by counting, as a function of the
parameters, the number or zeros of the gradient where
the principal minors of the Hessian matrix are all non
negative. This may be done with the algorithm of [6].

Such a problem occurring in data transmission has
been solved in [3], where it has been shown that the
following cost function of four complex variables has
only one local minimum if and only if the positive pa-
rameter α is different from 1 (the symbol ∗ denotes
complex conjugate).

J = |g11|4 + |g12|4 + 4|g11|2|g12|2 + |g21|4 + |g22|4
+4|g21|2|g22|2 − 2|g11|2 − 2|g12|2 − 2|g21|2
−2|g22|2 + α(|g11|2|g21|2 + |g12|2|g22|2
+g11g

∗
12g

∗
21g22 + g∗11g12g21g

∗
22) + 2.

5. Identification of hidden state parameters

Another situation where an optimization problem
may be solved advantageously by algebraic computa-
tion is the following. Consider a physical system with
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k hidden state parameters from which k + 1 measur-
able quantities depend rationally. Identifying the hid-
den parameters from the measurement amounts thus
to solve an overdetermined system. Unfortunately it
has usually no solution, because of the imprecision of
the measures.

In fact, the dependence relations between the mea-
surable quantities and the state parameters define a
parametrization of some hypersurface in the measures
space. Therefore the best way to identify the state pa-
rameters consists in finding the values of the param-
eters for the point of this hypersurface which is the
closest to the measured point, i.e. to solve a problem
of global optimization.

An example of such a situation, which has been
solved in [4], is the following. Let us consider, in
statistics, a probability law which is a mixture of two
Gaussian laws. There are five unknown parameters
which are the ratio of the mixture, the two mean val-
ues and the two square deviations. The measurable
quantities are the six first moments, which are ratio-
nal functions of the five parameters. After some re-
ductions and changes of variables, these relations are
equivalent to the system

W = w

X = −6u3 + 2v2 − 4vw − w2

3u

Y = −4vu3 + 20u3w + 2v3 − 5vw2

3u2

Z = (144u6 + 72u3v2 − 180u3vw + 4v4

−90u3w2 − 30v3w + 30v2w2 + 5vw3)/9u3

u > 0,

where the state parameters are u, v, w and the measur-
able quantities are W, X, Y, Z. The relation between
W, X, Y, Z, which is obtained by eliminating u, v, w,
is a polynomial of degree 23 with 195 monomials and
coefficients up to 14 digits.

To minimize the distance from a point (w, x, y, z)
to the hypersurface defined by this parametrization,
one has to compute the critical points of the distance
function, i.e. the points (W, X, Y, Z) where the vector
(W−w, X−x, Y −y, Z−z) is orthogonal to the surface.
This leads to a system with 176 complex solutions (see
[5] for details), whose real solutions may be computed
in a few minutes with a standard laptop. I do not
know if the numerical methods for global optimization
are able to solve a problem of such a size.

Structural stability of the solution. It may hap-
pens that there are several points of the hypersurface
which are roughly at the same distance of the mea-
sured point. This may occurs if the measures are not
precise enough. This is also the case if the measured
point is close to a self crossing point of the hypersur-
face, i.e. a point corresponding to several values of

(u, v, w). We say that such a point is a point of struc-
tural instability because increasing the precision does
not allow to choose between the solutions.

The set of points of structural instability is clearly a
subset of the singular locus of the hypersurface, but it
may be much smaller: In the singular locus there may
by real crossing points between two conjugate complex
sheets or between sheets not satisfying the inequalities
(here u > 0). In our example of the mixture of two
Gaussian laws, it has been computed, using the algo-
rithm of [6]: It consists in a single linear variety while
the singular locus is the union of it with a variety of
the same dimension and degree 150.

Thus the locus of structural instability is not only
very small, but it has been fully characterized. This
allows to know if the measured point is close to this
locus before any computation. If it is the case, one may
thus predict that there the computation will provide
be several (usually two) admissible solutions.

6. Conclusion

All these examples show that exact computation
may be helpful, in various situations, to solve opti-
mization problems.

This help may consist in

• Simplifying the optimization problem.

• Certifying the numerical solution or detecting the
regions where numerical methods are unstable.

• Solving the problem when the cost function is too
irregular.

The exact computations are clearly not very fast,
but they appear to be competitive in many case which
are difficult for numerical methods, especially when
global optimization or certification of the result are
required.
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