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Abstract—Transportation companies are now begin-
ning to utilize the electric vehicles (EV) for deliveries to
reduce greenhouse gas emissions. To determine the short-
est tours by using the EVs, the Electric Vehicle Rout-
ing Problem with Time Windows (EVRPTW) has been
established. Further, an Adaptive Large Neighborhood
Search (ALNS) has been proposed as one of the meth-
ods for solving EVRPTW. Although the ALNS utilized
various types of local search methods for improving the
solution, our preliminary numerical experiments revealed
that the ALNS had an unbalanced effect between intensi-
fication and diversification in the searching processes. To
improve this problem, we proposed the ALNS with tabu
search method. In addition, this method obtained smaller
number of electric vehicle usage, which is the primary ob-
jective in EVRPTW, as compared to the original ALNS for
simple instances of EVRPTW. In this work, we investigate
the performance of our proposed method for difficult in-
stances of EVRPTW. Numerical experiments then showed
that our method also obtained good performance for vari-
ous types of benchmark problems.

1. Introduction

Home delivery services have rapidly been increasing by
recent developments of electric commerce markets. For
transportation companies, it is desirable to minimize the
number of delivery vehicles and a total distance of all ve-
hicles. This problem of finding shorter routes with small
numbers of vehicles is called a Vehicle Routing Prob-
lems (VRP). In addition, customers specifies a convenient
time window to receive their goods. A VRP of consider-
ing the time window of each customer is called the Vehicle
Routing Problem with Time Windows (VRPTW).

To reduce greenhouse gas emissions, transportation
companies are now beginning to utilize electric vehicles
(EVs) for deliveries. However, the EVs have a limited bat-
tery capacity and a shorter cruising distance than that by
gasoline-powered vehicles. Therefore, the EVs must stop
at any recharging stations to recharge the batteries during
deliveries to customers. The electric vehicle routing prob-

lem with time window (EVRPTW) is an extension of the
VRPTW where EVs with limited battery capacities can be
recharged. In the EVRPTW, two recharging policies are
considered: a full recharge [1] and a partial recharge [2].
The full recharge policy requires that the EV’s battery is
fully charged. On the other hand, for the partial charge pol-
icy, the battery will only be charged based on the amount of
power required for the remaining deliveries. The problem
is called EVRPTW with partial recharge (EVRPTW-PR)
[2]. In this work, we treat the EVRPTW-PR.

Many heuristic methods were proposed for the
EVRPTW, because the problem is a Non-deterministic
Polynomial hard problem. As one of the heuristic methods,
an adaptive large neighborhood search (ALNS) which uses
21 different local search methods has been proposed. Gen-
erally, a balance between intensification and diversification
is important to find good solutions by the heuristic method.
Diversification is an exploration of new areas of the search-
ing space. On the other hand, intensification is an intensive
search for areas close to the current good solution. To re-
alize diversified search, the ALNS probabilistically selects
one local search from 21 different local searches to shorter
the length of the tour. In addition, ALNS employs a ran-
dom strategy that randomly moves the current solution to a
neighborhood solution to avoid local optimal solutions and
search for various solutions. Therefore, the ALNS cannot
find intensively search around good solutions due to this
random strategy.

We have already proposed a modified ALNS that
changes the random strategy to a greedy strategy [3]. In
this method, neighborhood solutions were generated by
three local search method: an exchange method, a CROSS-
Exchange method, and a station insertion/removal method.
However, the solution got stack at a local minimum if we
only used the greedy search. To effectively escape from the
local minima, the Tabu Search method (TS) was used in
the improved method [3]. As a result, the proposed method
successfully reduced the number of vehicles as compared
to the ALNS. However, the benchmark instances used in
the experiments were easy ones, which have a relatively
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tight time windows. Therefore, in this work, we investi-
gated performance of the proposed method for benchmark
instances with wide time windows. The wide time window
increases the number of feasible solutions. It makes more
difficult to find optimal or good near-optimal solutions. As
a result of numerical simulations, the proposed method also
showed higher performance than ALNS as in the cases of
the wide time windows.

2. Electric Vehicle Routing Problem with Time Win-
dows

The Electric Vehicle Routing Problem with Time Win-
dows (EVRPTW) was first introduced by Schneider et al.
in 2014 [1]. In this model, a battery in an EV is assumed
to be full after the recharge if the EV visited a recharging
station. As a model of relaxing the full recharge restric-
tion, the EVRPTW with partial recharging (EVRPTW-PR)
is formulated by Kenskin and Çatay [2]. In EVRPTW-PR,
the battery is not fully charged, but is charged by any quan-
tity.

To construct the EVRPTW-PR, a complete directed
graph G = (V ′, A) is given where V ′ = {0} ∪ V ∪ F, {0}
is a depot, V is a set of customers, F is a set of recharging
stations, and A = {(i, j)|i, j ∈ V ′} is a set of arcs. Each
arc is associated with a distance di j and a travel time ti j. A
customer i ∈ V has demand qi > 0, service time si > 0,
and time windows [ei, li]. The vehicle must visit customer
i ∈ V between ei and li. If a vehicle arrived at customer i
before ei, the vehicle must wait until ei.

All the EVs with fully charged batteries depart from the
depot and return to the depot. A maximum load capacity
and a maximum battery capacity of the EV are defined by C
and Q, respectively. The EVs must recharge at the station
before they run out of charge. All stations can be visited
more than once. The battery charge is consumed at a rate
of h. Thus, if the EV travels a distance di j, the battery will
consume h × di j.

We then define a binary decision variable xi j that takes
value 1 if the EV moved from the customer/station i to cus-
tomer/station j and 0 otherwise. An objective function of
EVRPTW-PR is defined as follows:

D = min
∑
i∈V ′

∑
j∈V ′,i, j

di jxi j (1)

3. Adaptive Large Neighborhood Search

The ALNS [2] improves a solution by using 21 differ-
ent local search methods. The local search methods are
classified into five classes: Customer Removal (CR), Cus-
tomer Insertion (CI), Station Removal (SR), Station Inser-
tion (SI), and Route Removal (RR). Table 1 shows local
search methods for each class and Figure 1 shows a flow
chart of ALNS. The ALNS performs three processes de-
pending on the iteration number (Fig. 1). If the iteration
number j is divisible by NS R, the ALNS performs the lo-
cal search methods in the SR and SI. Further, if iteration

Table 1: Local Search Method used in ALNS

Customer Removal (CR)
Random CR, Worst-Distance CR, Worst-Time CR,
Shaw Removal CR, Proximity-Based CR, Demand-Based CR,
Time-Based CR, Zone Removal CR

Station Removal (SR)
Random SR, Worst-Distance SR, Worst-Charge Usage SR,
Full Charge SR

Customer Insertion (CI)
Greedy CI, Regret-k CI, Time Based CI, Zone CI

Station Insertion (SI)
Greedy SI, Comparison SI, Best SI

Rout Removal (RR)
Random Route Removal, Greedy Route Removal

j ← 1

k ← 1

k ← k + 1

j ← j + 1

Figure 1: A flowchart of the ALNS algorithm

number j is divisible by NRR, the ALNS performs the lo-
cal search methods in the FR and CI. Otherwise, the local
search methods in CR and CI are performed. The CR and
CI class mainly perform route improvement in the ALNS
algorithm (Fig.1(C)). In addition, the SR and SI class pro-
duce no battery penalty solution by relocating few stations
for each NS R frequency. Operations of Fig. 1(B) produce
broad solutions.

In each class, a local search method to be performed is
probabilistically selected according to a selection probabil-
ity. To calculate the selection probability for local search
a, an adaptive weight wa is given. Then, the weight wa is
updated by a score π, which is determined by the quality
of the obtained solution after applying the method a. The
initial weight of each algorithm is 0. The score π is added
according to the three update conditions. If a new best so-
lution is found, the score of ϕ1 is granted to the method
a. If a new solution is better than the previous solution,
the score of ϕ2 (< ϕ1) is granted. When a new solution is
worse than the previous solution, the update of the solution
is determined by the simulated annealing rule. If the worse
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solution is accepted by the simulated annealing rule, the
score of ϕ3 (< ϕ2) is granted.

The weight of method a is updated by the following
equation:

ws+1
a = ws

a(1 − ρ) + ρπa/θa, (2)

where ρ is a roulette wheel parameter, θa is the number of
times that the method a has been executed, and πa is the
score of the method a. The values of wa and θa are reset
to zero at every Nc iterations (s mod Nc = 0) for customer
related (Fig. 1 C) and Ns iterations (s mod Ns = 0) for
station related (Fig. 1 A).

The selecting probability of the method a at time s+ 1 is
calculated by following equation:

Ps+1
a =ωs

a/

m∑
i=1

ωs
i , (3)

where m is the number of the local search in each class. For
example, m is eight for CR class.

4. Proposed Method

One of the most important issues for the VRP is to de-
crease the number of vehicles. Although the route removal
(part B in Fig. 1) in the ALNS can decrease the number
of vehicles, it does not effectively reduce the routes. Fig-
ure 2 shows the number of vehicles included in the tour
by applying the route removal. As shown in Fig. 2, the
number of vehicles increases rather than decreasing. In the
ALNS, the current solution randomly moved to a neigh-
borhood solution of the selected algorithm even if there is
a good solution in the neighborhood solutions.

In the proposed method, we employed a greedy search,
instead of the random search. However, the solution gets
stack at a local minimum if we only used the greedy search.
To effectively escape from the local minima, TS, which is
one of the most powerful meta strategies, is introduced in
the proposed method. The TS is based on a strategy of
iteratively moving from one solution to the best improved
solutions in the neighborhood of the solution. To escape
from local minima and to avoid cycles of solution search, a
previous solution is added to a tabu list and is not allowed
to move back to it for a certain temporal duration called a
tabu tenure. The proposed method is realized by changing
the operations (Fig.1(B)) to the TS.

In the proposed method, a solution moves to the best new
solution from neighborhood solutions constructed by the
Exchange method, the CROSS-Exchange method, and the
Station-InsertionRemoval method. The exchange method
exchanges a customer/station in the same tour (Fig. 3(b)).
The CROSS-Exchange replaces a partial tour i-i′ in one
tour with a partial tour j- j′ in the other tour (Fig. 3(b)). The
maximum length of the partial tours is set to three in the
CROSS-Exchange method. The Station-InsertionRemoval
inserts a station and deletes a visited station (Fig. 3(c)).
Then, the operation performed on the best solution is mem-
orized in the tabu list, and the same operation is prohibited
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Figure 2: Temporal changing of the number of vehicles by ALNS

for a while. The information to be recorded in the tabu list
for each local search method is as follows:

Exchange method: The exchanged two nodes i and i′ is
memorized (Fig. 3(a)). The exchange of i and i′ is
prohibited for a while.

CROSS-Exchange method: The four nodes (i, i′, j, j′)
are memorized (Fig. 3(b)). The exchange of two par-
tial tour between i and i′ and j and j′ is prohibited for
a while.

Station-InsertionRemoval method: When a station is in-
serted into a tour, the two nodes where the inserted
station is connecting (h and j) are memorized (Fig.
3(c)). Then, the removal of the station between h and
j is prohibited for a while. When a station is removed
from a tour, the two nodes (h and j) are memorized
(Fig. 3(c)). Then, the insertion of the station between
h and j is prohibited for a while.

i′ i i′ i
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Figure 3: Local search method used in the proposed method

An improved solution by the local search methods is
evaluated by an evaluation function described as follows:

g(s) =
∑
i∈V ′

∑
j∈V ′,i, j

di jxi j + σ1 pt + σ2 pb + σ3 pc (4)
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where pt denotes the total violation time of the time win-
dow, pb denotes the total distance traveled with out-of-
charge, pc denotes the total quantity in excess of the ca-
pacity of the vehicle, σ1, σ2, and σ3 are adjustment param-
eters for each penalty. If pt, pb, and pc are equal to zero,
the corresponding solution becomes feasible.

5. Numerical experiment

To investigate performances of the proposed method, we
used the EVRPTW-PR benchmark problems [1]. In these
numerical experiments, the maximum amount where each
EV can be charged at each station is set to 0.7 × Q. Here,
Q is the capacity of the vehicles. The values of parameters
in the ALNS were set to NSR = 20, NRR = 2000, Nc = 50,
Ns = 1500, and ρ = 0.05. The length of the tabu tenure in
the proposed method was set to 80 ∼ 100 and the parame-
ters in the Eq.(4) were set as follows: σ1 = σ2 = σ3 = 50.
The feasible solution was construct by the nearest insertion
method. Usually, the nearest neighbor method first visits
the nearest customer from the depot. However, in these
experiments, the first customer was randomly determined
to construct various initial solutions. We then constructed
30 different initial feasible solutions, and improved these
solutions.

Results of the numerical experiments are shown in Ta-
ble 2. In Table 2, the first column lists the instance names
the second column presents the results of the proposed
method, the third column indicates the results of ALNS,
and the last column shows the best known solution. All the
instances in the lists have wide time windows. From Ta-
ble 2, the proposed method yields the same solution as the
best known solutions for C201. In addition, the proposed
method obtained shorter vehicle usages than those by the
ALNS for C206, R201, RC201 and RC206.

Figure 4 shows a temporal changing of the total distance
and the number of vehicles by the ALNS and the proposed
method for the C201. From Fig. 4, the proposed method
always searches for solutions with four vehicles. On the
other hand, the ALNS searches the large number of vehi-
cles and obtained long distances. From these results, we
concluded that the proposed method successfully reduces
the number of vehicles.

6. Conclusions
In this work, we investigated the performance of the pro-

posed method by using tabu search for EVRPTW-PR with
wide time windows. From the results, we confirmed that
the proposed method obtained the same solution as the best
know solution for C201. In addition, the proposed method
showed higher performance than the ALNS for various in-
stances. In future works, we will employ different types
of local search methods to further improve the proposed
method.

The research of T.K. and T.M were partially sup-
ported by a Grant-in-Aid for Scientific Research (C) from
JSPS(No.19K04907, No.19K04395, No.22K04602).

Table 2: Results of ALNS and ALNS with tabu search method
(total distance and the number of using vehicles)

ALNS&TS ALNS BKS

C201 629.95 (4) 651.83 (4) 629.95(4)
C206 630.02 (4) 650.11 (4) 629.95(4)
R201 1187.26 (4) 1221.97 (4) 1258.40(3)
R206 980.40 (3) 972.21 (3) 929.39(3)
RC201 1446.73 (5) 1595.04 (4) 1446.60(4)
RC206 1153.54 (4) 1198.9 (4) 1207.98(3)
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Figure 4: A temporal changing of the total distances and the
number of vehicles for C201
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