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Abstract—The implementability of a given hybrid
specification with discrete event controllers is pre-
sented. Particularly, by regarding hybrid dynamical
systems as a class of systems whose dynamics evolve
with two different types of independent variables, that
is, 2-dimensional (2D) dynamical systems, we give a
necessary and sufficient condition for a specification to
be implemented with discrete event controllers within
a behavioral framework, where a set of trajectories
plays a central roles in the system synthesis and anal-
ysis.

1. Introduction

The problem whether a given specification (con-
trolled behavior) can be achieved or not is one of the
most fundamental issues in control system synthesis.
Since this is equivalent to investigate of the existence of
a certain controller to be implemented so as to achieve
the specification, this property is referred to as the im-
plementability of a specification. The implementabil-
ity is deeply related to the dynamics of a system, so
it is natural and rational to consider that it is to be
addressed with representation-free, which corresponds
to that synthesis and analysis of a dynamical system
is performed without using mathematical models of a
system.

Recently, there are some important studies on this
issue with respect to the behavioral approach, where
the set of trajectories along which the dynamics of a
system obey plays a central role for analysis and syn-
thesis of the dynamical system. Particularly, in [2],
[3] and [9], the implementability of the controlled be-
havior in general systems were discussed. In discrete
event system theory, the references [4] and [5] pro-
vided conditions under which a given specification can
be achieved for the l− complete approximated system
that is described by the finite automaton. Since in
the behavioral approach, as written above, the cen-
tral role for synthesis and analysis is played with the
set of trajectory directly, it is to be expected that this
approach provides generalized and relevant theoretical
results for the implementability.

By the way, the study of a hybrid system, that con-

sists of not-only continuous-valued dynamics but also
event driven dynamics heterogeneously, has attracted
many researchers from theoretical and practical points
of view (e.g. cf. [10] and so on). The mathematical
languages used for describing these dynamics are com-
pletely different, it is difficult to view hybrid system
from broader perspective. Thus, it is rational to see
hybrid systems with focusing the set of trajectories
directly. In this sense, the behavioral approach is ex-
pected to provide unified standpoints to such a class of
systems. Moreover, for a plant with the above hybrid
dynamics, the rational method of hybrid controller has
not been well-established yet.

From these backgrounds, this paper considers the
implementability of a given hybrid specification with
discrete event controllers. The reason why we focus on
discrete event controllers instead of using hybrid con-
trollers is tha fact that the design method of hybrid
controller is not so well-established while the design
of the discrete event controllers have been provided
by many researchers. Here, by regarding hybrid dy-
namical systems as a class of systems whose dynamics
evolve with two different types of independent vari-
ables, that is, 2-dimensional (2D) dynamical systems,
we give a necessary and sufficient condition for a spec-
ification to be implemented with discrete event con-
trollers within a behavioral framework, where a set of
trajectories plays a central role in the system synthesis
and analysis.

2. The implmentability and the canonical con-
trollers

Here, we give brief reviews required in this paper
on the implementability and the canonical controllers
in a behevioral framework (See [9] for more details).
First, we view a dynamical system (with the manifest
behavior) Σ is defined as a triple

Σ = (T, W, Bf) (1)

where T is the time axis, W is the signal space and
B ⊆ WT is the manifest behavior, where WT is the set
of the maps from T to W. in the behavioral framework
(cf.[11],[12]). We also introduce a dynamical system
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defined by

Σ = (T, W × C, Bf) (2)

where Bf ⊆ (W×C)T is referred to as the full behavior.
For (w, c) ∈ Bf , w is the variable to be controlled, c
is the variable to be interconnected with a controller
illustrated in Fig 1.

Bf

w c

Figure 1: A plant Bf with interconnected varibles

A control in the behavioral approach is viewed as
follows (cf.[9]). We are given a plant Σ = (T, W ×
C, Bf) and a specification (a controlled behavior) K ∈
WT. Let Σc = (T, C, C) be a certain system. The
(partial) interconnection of Σ and Σc is defined as

Σ ∧ Σc = (T, W, Bf∥cC) (3)

and the behavior of this interconnected system is de-
fined by

Bf∥cC = {w ∈ WT|∃c ∈ C s.t. (w, c) ∈ Bf}. (4)

This is illustrated in Fig. 2.

Bf

w c

C

Figure 2: Interconnection of systems

The purpose of the interconnection is to find C such
that

Bf∥cC = K. (5)

And if there exists a controller C satisfying Eq.(5),
K is said to be implementable . Together with the
implementability of K, the following controller

Ccan = {c ∈ CT|∃w̃ ∈ WTs.t. (w̃, c) ∈ Bf , w̃ ∈ K} (6)

which was introduced in [9] also plays a central role.
The controller Ccan yields the specification K exactly
after the interconnection with Bf(see Fig.3). See also
Fig 4 illustrating the interconnection of a plant Bf

and a canonical controller Ccan
d . In the linear case, a

canonical controller corresponds to well-known Youla
parameterization.

Bf

c w̃

K

Figure 3: A canonical controller Ccan for K

Bf

c w̃

KBf

w

Ccan
d

Figure 4: The interconnection of Bf and Ccan for K

3. Problem Formulation

3.1. Hybrid system as 2D system

Before going to the problem formulation we attack
here, we now introduce a new concept for hybrid dy-
namical systems. Generally, the dynamics of a hybrid
system evolves with not only the (conventional) time
but also the event occurrence, so a hybrid system can
also regarded as a dynamical system with two indepen-
dent variables, one is the time, the other is the event
occurrence. This is a new view points of this paper.

Let T denote the time axis of a hybrid system. We
also denote Tc and Td with the time and the event
occurrence, respectively. For example, if the continu-
ous valued part of the hybrid system is described by
differential (difference) equations, we view Tc = R (Z,
respectively). if the discrete event part is described by
finite automata with n states, we regard Td = Z/nZ.
In the sequel, we divide the time axis T into

T = Td × Tc. (7)

as Cartesian product of two different time axis.

3.2. Projection operators on the behaviors

Here, we prepare some projection maps required to
formulate the problems and state our main result of
this paper. The first type of the projection maps is
used for restricting the dynamics of the full behav-
ior onto the manifest behavior or the interconnecting
variables behavior. Consider a dynamical system de-
scribed by Eq.(2). We then define the map πw(•) as
the subset of the maps W × C → W described by

πw(Bf) = {w ∈ W|∃c ∈ CT s.t.(w, c) ∈ Bf}. (8)

This map corresponds to the restriction of (w, c) ∈ Bf

into the manifest variable w. Similarly, we define the
map πc(•) as the subset of the maps W × C → C as

πc(Bf) = {c ∈ W|∃w ∈ WT s.t.(w, c) ∈ Bf}. (9)
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The second type of the projection maps is used for
the restriction of the hybrid dynamics evolving with
the two-different time axises onto the dynamics with
one of them. We define the map γ(•) as the subset of
the maps WT → WTd described by

γ(Bf) = {w(•, i) ∈ W Td s.t.(w, c) ∈ Bf}. (10)

That is, the role of γ is to pick up the discrete event
dynamics only of w ∈ WT.

It should be noted that these above maps are sur-
jective. and not bijective. Thus, we define πw(•)−1,
πc(•)−1 and γ(•)−1 as the inverse of the images.

3.3. The Problem Formulations

Now we are ready to formulate the problems we at-
tack here.

Firstly, a hybrid plant we consider here is assumed
to be described by

Σ = (T, W × C, Bf) (11)

where, the time axis T = Td × Tc.
Next, we focus on a specification to be achieved. We

assume that the specification K is with the time axis
Td, that is, K ⊆ WTd . We assume that a controller
to be implemented with Bf is a discrete event driven
system Td, which is denoted with C ⊆ CTd . We denote
the interconnection of Bf and C thorugh the variavle
c ∈ C with Bf∥cd

C, and is described by

Bf∥cd
C = {w ∈ WT|

∃c ∈ CT s.t.{γ(c) ∈ C and (w, c) ∈ Bf}}. (12)

In the discrete event systems, it is important to for-
bit that an undesirable event occur. From this stand
point, the first problem we address here is formulated
as follows.

Problem 3.1 For a given specification K ⊆ WT, find
a condition under which there exists a controller Σc =
(Td, C, C) such that satisfies

Bf∥cd
C ⊆ K. (13)

Since K is given so as to contain no undesirable event,
the behavior after the interconnection does not also
contains undesirable event as long as the designed con-
troller satisfies the above condition.

The second problem is more strict than Problem 3.2,
in the sense that it requires that the interconnection
should achieve a given specification exactly. That is to
say, it is also less conservative than the first problem.

Problem 3.2 For a given specification K ⊆ WT, find
a condition for K to be implementable with Bf , or
equivalently, for the existence of a controller Σc =
(Td, C, C) such that satisfies

Bf∥cd
C = K (14)

In the end of this section, we provide the useful
lemma reauired in the following main results.

Lemma 3.1 For Eq.(12), the following relation holds;

Bf∥cd
C = {w ∈ WT|

∃cd ∈ Cs.t.{∃c ∈ γ−1(cd)s.t. (w, c) ∈ Bf}} (15)

(Proof): It is enough to show that the sets of the right
hand side of Eq.(12) and Eq.(15). Assume that w ∈
WT is included in the right hand side of Eq.(12). Then,
or equivalently, there exists a c ∈ CT such that (w, c) ∈
Bf and γ(c) ∈ C. Define cd := γ(c) ∈ C, which implies
c ∈ γ−1(cd). Together with the condition (w, c) ∈ Bf ,
we see that for cd there exists c such that c ∈ γ−1(cd)
and (w, c) ∈ Bf . Thus, w ∈ WT is included in the right
hand side of Eq.(15).

Conversely, assume that w ∈ WT is included in the
right hand side of Eq.(15). Then, or equivalently, there
exists a cd ∈ C such that (w, c) ∈ Bf and c ∈ γ−1(cd).
This implies that cd ∈ γ(c) ∈ C, which also implies
that for this w there exists c ∈ CT such that γ(c) ∈ C

and (w, c) ∈ Bf . Thus, w ∈ WT is included in the right
hand side of Eq.(12). (Q.E.D).

4. Main results

4.1. A solution to Problem 3.1

Theorem 4.1 For S ⊆ WT, if for any (w, c) and
(w̃, c̃) ∈ Bf such that γ(c) = γ(c̃), w ∈ K implies
w̃ ∈ S, then there exists a controller Σc = (Td, C, C)
such that Bf∥cd

C ⊆ S.

(Proof): Here we prepare a canonical controller de-
fined by

Ccan′
d := {cd ∈ CTd |∀c ∈ γ−1(cd) ∩ πc(Bf) s.t.

{∃w s.t.(w, c) ∈ Bf and w ∈ K}} (16)

and show Bf∥cd
Ccan

d ∩K. Assume that w ∈ Bf∥cd
Ccan

d .
Then, define cd := γ(c) for c such that (w, c) ∈ Bf , cd ∈
Ccan

d holds. This implies that (w̃, c̃) ∈ Bf such that
c̃ ∈ γ−1(cd) and w̃ ∈ K. Thus, the above condition in
the theorem yields that w ∈ K (Q.E.D)

4.2. A solution to Problem 3.2

It should be noted that the conditions of Theorem
4.1 are also sufficient ones. The reason is similar to
the case in which a specification is with only one time
axis stated in the previous subsection. Thus, here, we
also impose the following characterization in order to
derive the necessity condition for the achievability of
K.

Property 4.1 For any (w, c) and (w̃, c̃) ∈ Bf such
that γ(c) = γ(c̃), γ(w) ∈ K, if there exists a c′

such that(w, c′) ∈ Bf , then there exists a c∗ such that
(w̃, c∗) ∈ Bf such that γ(c∗) = γ(c′).
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By using this property, we obtain the following nec-
essary and sufficient condition as follows.

Theorem 4.2 Assume that Bf is with Property 4.1.
For K ⊆ WT, there exists a controller Σc = (Td, C,C)
such that Bf∥cd

C = K. if and only if the following two
conditions holds:

1. ∃C0 ⊆ WT s.t. K = Bf∥cC0.

2. For any (w, c) and (w̃, c̃) ∈ Bf f such that γ(c) =
γ(c̃), w ∈ K implies w̃ ∈ K.

(Proof): Here we also prepare a canonical controller
defined by Eq.(16). We first show the ’if’ part. Assume
w ∈ K. From the condition 1, there exists a c such
that (w, c) ∈ Bf and c ∈ C0. Define cd := γ(c). For
c̃ ∈ γ−1(cd) such that c ̸= c̃ if there exists a w̃ such that
(w̃, c̃) ∈ Bf , then the condition 2 yields that w̃ ∈ K.
This also implies cd ∈ Ccan

d . From these observations,
we see that

{c ∈ C0|∃w ∈ K s.t. (w, c) ∈ Bf} ∈ Ccan
d (17)

so we obtain

K = Bf∥cC0

= πw(Bf ∩ π−1
c (C0)) ⊆ πw(Bf ∩ π−1

c γ−1(Ccan
d ))

= Bf∥cdC
can
d . (18)

Next, we focus on the ’only if’ part as follows. Let
C be a controller satisfying Bf∥cd

C = K. Firstly
we see that the necessity of the condition 1 can be
shown defining C0 = γ−1C. Next, for any (w, c) and
(w̃, c̃) ∈ Bf such that γ(c) = γ(c̃), assume that w ∈ K.
Since C achieves the specification K, there exists a
c′ ∈ γ−1(C) such that (w, c′) ∈ Bf . From Prop-
erty 4.1, this implies that there exists a c∗ such that
(w̃, c∗) ∈ Bf and γ(c∗) = γ(c′) ∈ C. Again since C

achieves K, we see that w̃ ∈ K. Thus, the condition
also holds. (Q.E,D)

5. Concluding Remarks

In this paper, we have addressed an implementabil-
ity of hybrid dynamical systems in a behavioral frame-
work. by using discrete event driven controller. Here,
we have regarded hybrid dynamical systems as a class
of systems whose dynamics evolves with two different
types of independent variables, one is a ”time” with
which a solution of differential or difference equations
evolve, other is ”the event time” or ”discrete state
index” corresponding to the occurrence of a discrete
event or a switching time between one and another
states. We have also seen that such a stand point en-
ables us to see that a hybrid system is viewed as a
2-dimensional (which is abbreviated to as 2D in the
following) dynamical system . In this new setting, we

have provided a necessary and sufficient condition of
the existence of a event-driven controller for a given
specification to be controlled.
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