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Abstract—Timed discrete event systems are a class of
discrete event systems which can represent information of
time of event occurrences. In this paper, we propose a syn-
thesis method of a supervisor for such systems. The su-
pervisor is constructed by reinforcement learning under the
framework of the supervisory control proposed by Brandin
and Wonham, and is optimal with respect to a language
measure which is introduced by Wang and Ray. The pro-
posed method is applicable to the situation which precise
information of the system is unknown.

1. Introduction

Discrete event systems (DESs) are widely found in many
artificial systems[1]. The supervisory control initiated by
Ramadge and Wonham is a logical control method for
DESs[2]. In the Ramadge and Wonham framework, a con-
troller, called a supervisor, assigns a set of events permitted
to occur for satisfying the control specifications. In some
systems such as real time systems, some events are required
to occur within designated time bounds. Timed DESs are
a class of DESs which can represent such specifications.
Brandin and Wonham proposed a supervisory control for
timed DESs[3]. They introduced a tick event and forcible
events to represent and control timed DESs.

In this paper, we propose a synthesis method of the su-
pervisor for timed DESs. The proposed method is an ex-
tension of our previous works to timed DESs [6, 7, 8]. The
method uses reinforcement learning to learn the supervisor
and is optimal with regard to a language measure. The lan-
guage measure is a performance index for the languages
generated by DESs[4, 5]. So, it is possible to evaluate
the performance of the system quantitatively. An optimal
scheduling in soft-real time systems using language mea-
sure is also proposed[9]. By using reinforcement learning,
the supervisor learns the control patterns based on rewards.
Therefore the proposed method is applicable under the im-
precise description of specifications and uncertain environ-
ment.

This paper is organized as follows. The model of the
timed DES and the language measure are introduced in sec-
tion 2. Description of the system by the Bellman equations

is shown in section 3. The learning method of the optimal
supervisor is proposed in section 4. Conclusions are pre-
sented in section 5.

2. Preliminaries

In this paper, we use the timed DES proposed by Brandin
and Wonham[3]. The timed DES G is modeled by a 5-
tuple G = (X,Z%,6, x1, X;) where, X = {x1,xp,---,x,} is
a set of finite states, ¥ = {o1,07, - -,0,} is a set of fi-
nite events, § : X X X — X is a state transition function,
x1 € X is an initial state, X,, C X is a set of marked states.
X* is a set of all finite strings over X including the empty
string €. The transition function is extended to the func-
tion 6 : X X £¥* — X in the ordinary way. Denoted by
a'ff is the index set of events by which a transition from
state x; to x oceurs, i.e., of = {j|6(x;, oj) = x¢}. De-
noted by 4 is the index set of active events at state x;, i.e.,
ai ={jlo(x;, o) is defined}. The language L(G, x;) gener-
ated by the DES G starting from the state x; € X is defined
by

L(G, x;) = {s € " | 5(x;, 5) € X}. (1)

¥ is partitioned into a set of normal events X, and a spe-
cial event o, = tick. The event tick represents “tick of the
global clock™. X, is also partitioned into a set of control-
lable events X. and a set of uncontrollable events X,,..

In the original supervisory control[2], the supervisor
controls the occurrence of controllable events so as to sat-
isfy logical control specifications of the DES. For the timed
DES, a set of forcible events X, C X, is introduced. De-
noted by 6'{ is the index set of forcible events at state x;,
ie, & = {jlo;isdefinedand o; € X;}. The supervi-
sor can force the occurrence of the forcible events. If a
forcible event is forced, a tick of the clock is preempted by
the event. In other words, the occurrence of tick is prohib-
ited by forcing a forcible event, and the supervisor can con-
trol the DES to satisfy time constraint. Note that forcible
events may either be controllable events or be uncontrol-
lable events, and one of other permitted events may occur
in the DES even if there are forced events.
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For the purpose of evaluation of the DES G controlled
by the supervisor S, a signed real measure called a lan-
guage measure is introduced[4, 5]. The set of marked
state X,, is partitioned into a set of desired states X;; and
that of undesired states X,. The characteristic function
y:X — [-1 1] U {—co} is defined as follows:

[-1,0)U{-o0} ifx;€X,,
yx) =yieq {0} if x; ¢ X, 2)

v; shows the evaluation of each state, and the fatal states for
the DES are expressed by a special value —co. The rule of
calculation for y; and —co is defined as follows:

—00 <y for any y; € [-1, 1],

Vi + (—00) = —c0 for any y; € [-1, 1] U {—o0} and,
Vi X (—00) = —00 forany y; € (0, 1].
Y =[y1y2 - yul" is called a state weighting vector.

A supervisor S assigns disabling events and forc-
ing events to the DES G. Denoted by df is the in-
dex set of disabling events at state x;, i.e., df =
{ jlojis disabled at state x; }, and is called a disabling pat-
tern. Denoted by fiS is the index set of forced events at
state x;, i.e., fiS = { jl o is forced at state x; } and is called
a forcing pattern. A pair of a disabling pattern and a forcing
pattern is called a control pattern. ¢f = (d7, f¥) denotes a
control pattern at state x;. Denoted by 6"? is the index set of
active events at state x; under the control of the supervisor
S, and is defined as follows:

{ {j16:=d} —{m}}
{jloi—d}}

if f5#0,

AS
7i = it £5 =0. )

L

Note that tick (= o) is preempted by forced events in the
control pattern. Forced events are always permitted to oc-
cur, i.e., fl.S N df =0.

Denoted by p; j(c‘ig ) € [0, 1] is the occurrence probability
of the event o; at state x; under the control pattern cf A
state transition cost 7rfk € [0, 1] of the controlled system
S /G is defined as follows:

Db if &F =0,
P )
0 otherwise.

S8
my(c}) =

ITS denotes a state transition cost matrix whose (i, k)-th el-
ement is 7rfk

Let {—‘f = &(x;, c‘f) be a cost by disabling or forcing events
at state x;. &5 = [‘f‘f, fg, el f;f 1" is called a controlling
cost characteristic vector of a supervisor S'.

Then, a performance vector i’ of the controlled system

S/G is given as follows[10, 11]:

Q)

(1 O) 15O - O]
o[l —(1 -1 ys, (5)

where 0 € (0, 1) is a constant parameter, Y5 = ¥ — &5 isa
modified characteristic vector, and ,uf (0) is a language mea-
sure of L(S /G, x;). It represents a quantitative performance
index of the timed DES controlled by the supervisor.

3. Description by Bellman equations

We model the controlled system G/S by the Bellman
equation. The supervisor § assigns a control pattern cf
at state x; to the timed DES G. Therefore, the following
Bellman equation holds[7]:

V3G = > P el 30 (7 (i ef 10 + VS ()}, (6)

xreX

where V¥ (x;) is a discounted expected total reward at state
x; under the control by the supervisor § and called a value
function, P(x;, cf , Xx) is a probability of a transition from
state x; to x;, when a supervisor S assigns a control pattern
cf , F(x, cf, X¢) is an expected reward when a state transi-
tion from x; to x; occurs by assigning the control pattern
cf, and vy is a discount rate of reward.

In the DES G, an event occurs based on the given control
pattern cf Therefore, the following equation holds:

P(xi, ¢}, xi) = Z Pi(xi, ¢} o) Pa(xi, 07, X0, (N
s

where P1(x;, cf, o j) is a probability that an event o; occurs
in the DES G when the supervisor S assigns the control
pattern cf at state x;, and P5(x;, 0, x;) is a probability that
the DES G makes a transition from the state x; to x; when
an event oj occurs.

We assume that Pq(x;, c‘ig ,0;) is determined as follows:

Pl(x,-, Cf, Cl'j)
py(xi, o))
Z py(xi, o) + Z p*(xi, 0%)
kefs ke(d—dS —f5 ~im})
if 5 #0and jed),
pr(xi,0))
Z p(xi, o) + Z p*(xi, 0%)
_ keff ke{Gi—d — f5 —{m}} (8)
iff$ #0and j¢ 6/,
P (xi, o))
Z P (x;, o)
kedi—dS
iffl.s = ( and &y —df # 0,
0
otherwise,

where p*(x;,0;) € [0, 1] represents an weight of occur-
rence of the event o at state x;, and p;(x,-,aj) € [0,1]
represents an weight of occurrence of the forced event o
at state x;. Therefore the weight of occurrence of the event
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changes if the event is forced. The weight parameters have
the constraint as follows: For all state x;

D P o) + ) P o) = 1. ©

kEoA‘l.f ked;

This means the sum of all weight parameters at each state
is always 1.

Moreover, we assume a discount rate y is determined as
follows:

1-0 ifjed?,

_ S
Y=y, ¢, o) = { 0 otherwise. (10)

Then we define a function 75 : X x X — [0, 1] as fol-
lows:

Z Pl(x,-,cf,o'j) lfé'f 0,

m =0 (1)
0 otherwise.
Let IT* be a matrix whose (i, k)-th element is ﬂlﬁ*,f.
We define the reward r*(x;, cf, x;) as follows:
rx el x) = () = y() = € (xi ), (12)

which means the reward is based on the evaluation of the
current state x; and the cost of the assigned control pattern

.
By using the above definitions and assumptions, if a state
transition is deterministic, Eq. (6) is transformed into
VS (x) = r*(xi,c)) + (1 - 6) Z (;r;ka v (xk)). (13)

xreX

We define a vector Vand R as V = [VS(x)-+- VS (x)]"
T

and R = [r*(xl,c‘f) e (X, O )] respectively. Then the

following equation holds:

V=R+(1 -0V,
V=[I-(-0I%) 'R

(14)
(15)

By comparing Eq.(5) and Eq(15), it shows that the value
function vector V and the performance vector u° (6) has the
following relations:

15 (6) = 6v. (16)
Therefore, a language measure is derived from the value
function.

4. Learning algorithm

In this section, we propose a learning method of the op-
timal supervisor S for the timed DES G. The proposed

method is based on the Q-learning[12]. The Bellman opti-
mal equation correspond to Eq.(13) is described as follows:

Q*(xiscf) = r*(xhc?)
+(1=0) > (Pl o)V (S(xi, o)) (17)
jeos

where for the state x; = 6(x;, o) € X,

(18)

Vi(xe) = mf_lX 0" (xx, ©),

and Q*(x;, c‘f ) is a discounted expected total reward when
the supervisor S assigns c‘f at state x; and continues to as-
sign the optimal control patterns until the controlled behav-
ior reaches a terminal state. Note that, by the result of sec-
tion 3, the optimal control pattern derived from Q-learning
is also the optimal with regard to the language measure.

In the learning process, the supervisor S at state x; se-
lects a control pattern cf Then, an event o occurs in the
DES G, and the supervisor gets a reward r and observes
the new state x;. This process starts from the initial state x;
and ends at a terminal state. The supervisor S controls the
system based on the current state of the DES G. Therefore
the proposed method is a type of state feedback control.

From Eq. (17), the Q" is determined by r*, P, V*. So,
we introduce learning parameters 7, p” and p’, as estimated
values of 7, p and p, respectively. These values have been
initialized in advance. The supervisor updates r’ as follows:

P (xi,¢)) (i, c)) +alr = (xi, )], (19)
and, for all active events o’ which are permitted to occur
by the selected control pattern, the supervisor updates p’
and p’; as follows: Forall o’ = oy (I € &)

(1 =Bp'(xi,0’)
if o’ # o and ¢’ is not forced,
p'(xi,0")
B D P o)
keff
£ P enon - p o)
ke(of -1}
if o’ = o and o is not forced,
(1 - B)py(xi, )
if o’ # o and o’ is forced,
p’(xi’ a-’)
B D P o)

kefs

> P non - Py )
ke{o -5}
if ¢’ = o and o’ is forced,

p(xio) < (20)

2D

pixio’)  «

where both @ and g are learning rates.
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By using 7/, p’, and p'f, for all control patterns ¢” which
contain events with updated parameters by Egs. (19), (21)
and (21), Q-values are updated as follows:

O(xi, ") & r'(xi, )
+(1=0) > (PG V' SCxi ), (22)
jea?
where Q(x;, ¢’) is the estimated Q-values and for the state
X =06(x;,0)) € X,

V' (x) = max Q" (x, ), (23)

and P{ is calculated from the estimated values p” and p’f as
follows:

Pi(x;,0))
Py(xi, o))
Z p'f(xi, o) + Z p’(xi, k)
kefS ke{d—d? — f5 —{m}}
it £ #0and j € 67,
p'(xi,0;)
- Z p’f(xi,a'k) + Z p’(xi, k)
kefS ke{—d — f5 —{m}}
it £ #0and j ¢ 67,
p'(xi,0))
Z P’ (xi, %)
kegi—d

if f5 = 0.

(24)

Finally, we show the learning method of control patterns
from Q-values. Let fij € [0, 1] be a probability that the
supervisor § forces the occurrence of forcible event o; at
state x;, and let d; ; € [0, 1] be a probability that the super-
visor S disables the occurrence of controllable event o; at
state x;. The supervisor S assigns the control pattern ac-
cording to f; ; and d; ;- Let fis and c?f be the index set of the
forcing pattern and the disabling pattern which maximize
the Q values at state x; respectively. Then ﬁj and Jij are
updated as follows:

3 fi+A0=fp if jefs,
Ty {ﬁ,-+4<0—f,-,-> it jefs,
dij+A(1=dy) if jed’,
dij < {JUM(O—JU) it jgd, (26)

where A is a learning rate of control patterns. The above up-
dates increase the probability of forcing or disabling events
included in the estimated optimal control pattern. There-
fore, the probability of selection of the pattern increases.

5. Conclusion

In this paper, we considered a supervisory control prob-
Iem of the timed DESs by Brandin and Wonham, and pro-
posed the optimal supervisory control method based on re-
inforcement learning. The supervisor learns the optimal
control pattern with regard to the language measure.

Improvement of the algorithm for the large scale prob-
lem and extension to hybrid systems are future works.
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