
A Formula for the Supremal Controllable and Opaque Sublanguage

in Discrete Event Systems

Shigemasa Takai† and Yusuke Oka‡

†Graduate School of Science and Technology, Kyoto Institute of Technology
Matsugasaki, Sakyo-ku, Kyoto, 606-8585 Japan

‡Graduate School of Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501 Japan

Email: takai@kit.ac.jp

Abstract—In this paper, we study a property of
opacity in the language-based framework of discrete
event systems. The problem of synthesizing a super-
visor that enforces opacity in a maximally permissive
way is addressed. A maximally permissive opacity-
enforcing supervisor is realized by an automaton that
generates the supremal closed controllable and opaque
sublanguage of the generated language of the sys-
tem. This motivates the study on computability of the
supremal sublanguage. We present a formula for com-
puting the supremal sublanguage under some assump-
tion on uncontrollable events. Whenever the languages
under consideration are regular, the supremal sublan-
guage is effectively computed using the presented for-
mula.

1. Introduction

The theory of discrete event systems (DESs) pro-
vides powerful mathematical tools for dealing with is-
sues of computer security. The notion of intransitive
noninterference (INI) is used to solve several problems
in multilevel security systems. In [2], the notion of
observability [5], [8] for supervisory control of DESs
[9] was extended to capture INI, and a method for
verifying the extended version of observability was de-
veloped. The notion of opacity characterizes a prop-
erty that the secrete behavior of the system remains
opaque to an external agent [4]. Verification of opac-
ity with respect to the secrete behavior described by
state-based predicates was studied in the context of
Petri nets [4]. In [10], a notion of K-step opacity was
defined with respect to the secrete state set, and a
verification method using a certain observer automa-
ton was presented.

The prior works mentioned above focused on verifi-
cation of security properties. A control theoretic ap-
proach is useful to enforce required properties of the
system. Recently, opacity-enforcing supervisory con-
trol has been studied under the assumption that all
events are controllable [1]. The task of a supervisor
is to restrict the system behavior so that the opacity

property is satisfied. The secrete behavior is assumed
to be described by a language, and the language-based
notion of opacity is defined. Intuitively, the notion of
opacity means that an external agent observing only
the occurrences of observable events is unsure whether
the executed string is in the secrete language. The
class of (prefix-)closed opaque languages has a desir-
able property that it is closed under union [1]. Thus,
there always exists the supremal closed opaque sublan-
guage of a given language. Sufficient conditions under
which the supremal closed opaque sublanguage is reg-
ular were presented [1].

In this paper, we follow the framework of [1],
and study opacity-enforcing supervisory control in the
presence of uncontrollable events. In contrast to [1], we
allow the existence of uncontrollable events but only
consider the case that there is a single agent to which
the secret behavior has to remain opaque. Due to the
existence of uncontrollable events, the controllability
property [9] has to be taken into account in addition to
opacity. A maximally permissive opacity-enforcing su-
pervisor is realized by an automaton that generates the
supremal closed controllable and opaque sublanguage
of the generated language of the system. We present
a formula for computing the supremal closed control-
lable and opaque sublanguage under some assumption
on uncontrollable events. Whenever the languages un-
der consideration are regular, the supremal sublan-
guage is effectively computed using the presented for-
mula. Note that recently computability of the supre-
mal sublanguage has been proved independently in [6]
under different assumptions.

2. Preliminaries

We consider a DES modeled by an automaton G =
(Q, Σ, f, q0, Qm), where Q is the set of states, Σ is the
finite set of events, a partial function f : Q × Σ → Q
is the transition function, q0 ∈ Q is the initial state,
and Qm ⊆ Q is the set of marked states. If Q is
the finite set, G is said to be a finite automaton. Let
Σ∗ be the set of all finite strings of elements of Σ,

2008 International Symposium on Nonlinear Theory and its Applications
NOLTA'08, Budapest, Hungary, September 7-10, 2008

- 656 -

including the empty string ε. The function f can be
generalized to f : Q×Σ∗ → Q in the natural way. We
use the notation f(q, s)! for any q ∈ Q and any s ∈ Σ∗

to denote that f(q, s) is defined. The generated and
marked languages of G, denoted by L(G) and Lm(G),
respectively, are defined by L(G) = {s ∈ Σ∗ | f(q0, s)!}
and Lm(G) = {s ∈ Σ∗ | f(q0, s) ∈ Qm}.

Let L ⊆ Σ∗ be a language. We denote the set of all
prefixes of strings in L by L, that is,

L = {s ∈ Σ∗ | ∃t ∈ Σ∗; st ∈ L}. (1)

L is said to be closed if L = L. We also denote {t}
by t for each t ∈ Σ∗. For any languages L1, L2 ⊆ Σ∗,
their concatenation L1L2 is defined as

L1L2 = {st ∈ Σ∗ | s ∈ L1, t ∈ L2}. (2)

Also the quotient operation for L1, L2 ⊆ Σ∗ is defined
as

L1/L2 = {s ∈ Σ∗ | ∃t ∈ L2; st ∈ L1}. (3)

The event set Σ is assumed to be partitioned into
the observable event set Σo and the unobservable event
set Σuo [8]. The natural projection map P : Σ∗ → Σ∗

o

is inductively defined as follows:

• P (ε) = ε,

• (∀s ∈ Σ∗, σ ∈ Σ)

P (sσ) =
{

P (s)σ, if σ ∈ Σo

P (s), if σ ∈ Σuo.
(4)

The string P (s) is obtained by erasing all unobservable
events from s. If a string s ∈ L(G) occurs in G, then
the string observed by an external agent is P (s). So
if P (s) = P (s′) for s, s′ ∈ L(G), the agent cannot
distinguish between them. For a language L ⊆ Σ∗,
P (L) ⊆ Σ∗

o is defined as

P (L) = {P (s) ∈ Σ∗
o | s ∈ L}. (5)

Also, for a language L′ ⊆ Σ∗
o, P−1(L′) ⊆ Σ∗ is defined

as
P−1(L′) = {s ∈ Σ∗ | P (s) ∈ L′}. (6)

3. Opacity-Enforcing Supervisory Control

As in [1], we assume that the secrete behavior of the
system G is described by a nonempty language S ⊆
L(G). The notion of opacity means that an external
agent observing the behavior of the system through
the projection map P is unsure whether the executed
string is in the secrete behavior S. Opacity is formally
defined as follows.

Definition 1 [1] A closed language L ⊆ L(G) is said
to be opaque (with respect to S ⊆ L(G)) if

∀s ∈ L ∩ S, ∃s′ ∈ L − S; P (s) = P (s′).

The notion of opacity requires that for any secrete
string s ∈ L ∩ S, there exist an indistinguishable non-
secrete string s′ ∈ L − S. In this paper, we consider
a problem of synthesizing an opacity-enforcing super-
visor. Let Σc and Σuc be the sets of controllable and
uncontrollable events, respectively [9]. A supervisor
γ is formally defined by γ : L(G) → 2Σc . An event
in γ(s) is disabled by γ following the execution of a
string s ∈ L(G). Let L(G/γ) be the language gen-
erated under the control action of γ [9]. A closed
language L ⊆ L(G) is said to be controllable [9] if
LΣuc ∩ L(G) ⊆ L.

Since controllability and opacity are preserved under
union [1], [11], there always exists the supremal closed
controllable and opaque sublanguage of L(G). We de-
note this supremal language by sup CO(L(G)). Our
purpose is to synthesize a supervisor γ : L(G) → 2Σc

such that L(G/γ) = sup CO(L(G)). Such a supervisor
enforces opacity in a maximally permissive way.

A maximally permissive opacity-enforcing supervi-
sor can be realized by an automaton that generates
sup CO(L(G)). To compute sup CO(L(G)), we con-
sider the following iterative computation:

• L0 := L(G),

• (∀i ≥ 0) Li+1 := supC(sup O(Li)),

where sup C(L) (respectively, sup O(L)) is the supre-
mal closed controllable (respectively, opaque) sublan-
guage of L ⊆ L(G). If there exists i ≥ 0 such that
Li+1 = Li, then Li = sup CO(L(G)). To our knowl-
edge, the finite convergence of the above iterative com-
putation has not been established. In the next section,
we show that the one-step convergence is guaranteed
under certain assumption on uncontrollable events.

4. Formula for the Supremal Closed Control-
lable and Opaque Sublanguage

The following formula for the supremal closed con-
trollable sublanguage supC(L) of a closed language
L ⊆ L(G) was presented in [3]:

sup C(L) = L − {(L(G) − L)/Σ∗
uc}Σ∗. (7)

Also, in [1], the following formula for the supremal
closed opaque sublanguage sup O(L) of L was sug-
gested:

sup O(L) = L − {Σ∗ − P−1P (L − S)}Σ∗. (8)

Remark 1 Assume that G = (Q, Σ, f, q0, Qm) is
a finite automaton, and a closed language L ⊆
L(G) is generated by a finite automaton GL =
(QL, Σ, fL, qL0, QLm). It was shown in [7] that the
supremal closed controllable sublanguage sup C(L)
can be computed in O(|Q|·|QL|). If the secret behavior

- 657 -

S ⊆ L(G) is also marked by a finite automaton, then
the supremal closed opaque sublanguage sup O(L) can
be computed using the formula (8). The complexity
of computing sup O(L) is exponential since we have to
construct a deterministic automaton for the language
P−1P (L − S).

In order to guarantee the one-step convergence of
the iterative computation for the supremal closed con-
trollable and opaque sublanguage supCO(L(G)), we
impose the following condition C) on uncontrollable
events:

C) ∀σ ∈ Σuc∩Σo, ∀s, s′ ∈ L(G); P (s) = P (s′)∧sσ ∈
L(G) ⇒ s′σ ∈ L(G).

The above condition requires that for any two indistin-
guishable strings, if an uncontrollable and observable
event is feasible after one string, then it is also feasible
after the other string.

When G = (Q, Σ, f, q0, Qm) is a finite automa-
ton, the condition C) can be verified in the follow-
ing way. We construct the testing automaton T =
(Z, ΣT , g, z0, Z) as follows:

• Z = Q × Q and z0 = (q0, q0).

• ΣT = (Σ ∪ {ε}) × (Σ ∪ {ε}) − {(ε, ε)}.
• g : Z×ΣT → Z is defined as follows: For each z =

(q1, q2) ∈ Z and σT = (σ1, σ2) ∈ ΣT , g(z, σT)! if
and only if

– if σi �= ε then f(qi, σi)! (i = 1, 2),

– P (σ1) = P (σ2).

If g(z, σT)!, then g(z, σT) = (q′1, q
′
2), where

q′i =
{

f(qi, σi), if σi �= ε
qi, otherwise. (9)

The following proposition shows that the problem of
verifying the condition C) is transformed to a reacha-
bility problem in the testing automaton T .

Proposition 1 Assume that G = (Q, Σ, f, q0, Qm) is
a finite automaton. The condition C) does not hold if
and only if there exist σ ∈ Σuc ∩ Σo and a reachable
state (q1, q2) ∈ Z of the testing automaton T such that
f(q1, σ) is defined and f(q2, σ) is not.

In the following theorem, the one-step convergence
of the iterative computation for supCO(L(G)) is es-
tablished under the condition C).

Theorem 1 Assume that the condition C) holds.
Then,

sup CO(L(G)) = sup C(supO(L(G))). (10)

a c b d
a

a c

a

a c

cbd
a

Figure 1: Automaton G for Example 1.

a c b

a c

a

a c

cb

Figure 2: Automaton which generates sup O(L(G)).

The following example illustrates the computation
of sup CO(L(G)) under the condition C).

Example 1 We consider an automaton G shown in
Fig. 1, where the initial state is identified by the cycle
with an arrow ↓, and a marked state is identified by
a double circle. Let Σo = {a, b, d}, Σuo = {c}, Σc =
{a, b, c}, and Σuc = {d}. Then this automaton satisfies
the condition C).

We suppose that the secrete behavior is described by
the marked language Lm(G), that is, S = Lm(G). We
can easily verify that the generated language L(G) is
not opaque. For example, let us consider a secrete
string acbd ∈ S. Then any string s ∈ L(G) with
P (s) = P (acbd) = abd belongs to S.

We first compute the supremal closed opaque sub-
language sup O(L(G)). An automaton that gener-
ates sup O(L(G)) is shown in Fig. 2. We next com-
pute the supremal closed controllable sublanguage
sup C(sup O(L(G))) of supO(L(G)). The sublanguage
sup C(sup O(L(G))) is generated by an automaton
shown in Fig. 3. By Theorem 1, sup C(supO(L(G)))
is the supremal closed controllable and opaque sublan-
guage of L(G), and a maximally permissive opacity-
enforcing supervisor is realized by the automaton of
Fig. 3.

The following example shows that the formula of
Theorem 1 is not true without the condition C).

Example 2 We consider an automaton G shown in
Fig. 4. Let Σo = {a, b, d}, Σuo = {c}, Σc = {c},
and Σuc = {a, b, d}. Then this automaton does not
satisfy the condition C). For example, for a ∈ Σuc∩Σo

and cad, ad ∈ L(G), we have P (cad) = P (ad) = ad,
cada ∈ L(G) and ada /∈ L(G).

We suppose that S = Lm(G). We first compute
the supremal closed opaque sublanguage sup O(L(G)).

a c

a c

a

a c

c

Figure 3: Automaton which generates
sup C(sup O(L(G))).

- 658 -

a d c a
a

b

a

b

cda
a

Figure 4: Automaton G for Example 2.

a d c

b

a

b

cd

Figure 5: Automaton which generates sup O(L(G)).

An automaton that generates sup O(L(G)) is shown
in Fig. 5. We next compute the supremal
closed controllable sublanguage supC(sup O(L(G))) of
sup O(L(G)). The sublanguage sup C(sup O(L(G))) is
generated by an automaton shown in Fig. 6. Note that
for a ∈ sup C(sup O(L(G))) ∩ S, there does not exist
s ∈ sup C(supO(L(G))) − S such that P (a) = P (s).
Thus, sup C(supO(L(G))) is not opaque, which im-
plies that the formula of Theorem 1 does not hold.

The following theorem shows that the formula pre-
sented in Theorem 1 is simplified under a stronger as-
sumption that all uncontrollable events are unobserv-
able.

Theorem 2 Assume that Σuc ⊆ Σuo. Then,

sup CO(L(G)) = sup O(L(G)). (11)

5. Conclusion

In this paper, we have studied opacity-enforcing
supervisory control of DESs in the language-based
framework. The contribution of the paper is a for-
mula for computing the supremal closed controllable
and opaque sublanguage, which is derived under some
assumption on uncontrollable events. Whenever the
languages under consideration are regular, the supre-
mal sublanguage is effectively computed using the pre-
sented formula.

Acknowledgment

This work was supported in part by MEXT un-
der Grant-in-Aid for Scientific Research (No. 17360198
and No. 18560433).

a d

b

Figure 6: Automaton which generates
sup C(sup O(L(G))).

References

[1] E. Badouel, M. Bednarczyk, A. Borzyszkowski,
B. Caillaud, and P. Darondeau, “Concurrent se-
crets,” Discrete Event Dynamic Syst.: Theory
and Appl., vol.17, no.4, pp.425–446, 2007.

[2] N. Ben Hadj-Alouane, S. Lafrance, F. Lin, J.
Mullins, and M. Yeddes, “On the verification
of intransitive noninterference in multilevel secu-
rity,” IEEE Trans. Syst., Man, Cybern., Part B:
Cybern., vol.35, no.5, pp.948–958, 2005.

[3] R. D. Brandt, V. K. Garg, R. Kumar, F. Lin,
S. I. Marcus, and W. M. Wonham, “Formulas
for calculating supremal controllable and normal
sublanguages,” Syst. Contr. Lett., vol.15, no.2,
pp.111–117, 1990.

[4] J. W. Bryans, M. Koutny, and P. Y. A. Ryan,
“Modelling opacity using Petri nets,” Electronic
Notes in Theoretical Computer Science, vol.121,
pp.101–115, 2005.

[5] R. Cieslak, C. Desclaux, A. S. Fawaz, and
P. Varaiya, “Supervisory control of discrete-
event processes with partial observations,” IEEE
Trans. Automat. Contr., vol.33, no.3, pp.249–260,
1988.

[6] J. Dubreil, P. Darondeau, and H. Marchand,
“Opacity enforcing control synthesis,” Proc. 9th
Int. Workshop Discrete Event Syst., pp.28–35,
2008.

[7] R. Kumar, V. Garg, and S. I. Marcus, “On con-
trollability and normality of discrete event dy-
namical systems,” Syst. Contr. Lett., vol.17, no.3,
pp.157–168, 1991.

[8] F. Lin and W. M. Wonham, “On observability
of discrete-event systems,” Inform. Sci., vol.44,
no.3, pp.173–198, 1988.

[9] P. J. Ramadge and W. M. Wonham: “Supervi-
sory control of a class of discrete event processes,”
SIAM J. Contr. Optim., vol.25, no.1, pp.206–230,
1987.

[10] A. Saboori and C. Hadjicostis, “Notions of se-
curity and opacity in discrete event systems,”
Proc. 46th IEEE Conf. Decision and Contr.,
pp.5056–5061, 2007.

[11] W. M. Wonham and P. J. Ramadge, “On the
supremal controllable sublanguage of a given lan-
guage,” SIAM J. Contr. Optim., vol.25, no.3,
pp.637–659, 1987.

- 659 -

	Navigation page
	Session at a glance
	Technical program

