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Abstract—Intrinsic localized mode (ILM) is localized
vibration of energy in nonlinear coupled oscillator arrays.
Estimating the initial conditions of moving ILMs are re-
quired to investigate the characteristics of moving ILMs.
In this report, initial conditions of moving ILMs are gen-
erated from the frequency-wavenumber spectrum of static
ILMs. The Fourier spectrum of static ILMs is tilted in the
frequency-wavenumber domain. The slope depends on the
velocity of moving ILMs. In addition, the spectrum of the
static ILMs is expanded to the next Brillouin zones by us-
ing the Gaussian function. The estimated initial conditions
successfully generate long-lived moving ILMs with desired
velocities.

1. Introduction

Spatially localized vibration in nonlinear coupled oscil-
lator arrays is called intrinsic localized mode (ILM) or dis-
crete breather (DB). This phenomenon was first discov-
ered by Seivers and Takeno in Fermi-Pasta-Uram (FPU)
lattice[1]. Generally, ILM is caused by discreteness and
nonlinearity of the system. Therefore, ILM is identified in
various physical systems[2]. The ILM is also known can be
moved for a long distance without the decay of its energy
concentration. This implies that the moving ILM can be a
carrier of kinetic energy. In Ref.[3], moving ILMs were ex-
perimentally studied on cyclic electric nonlinear transmis-
sion lines. Moving ILMs have also been numerically stud-
ied on two-dimensional hexagonal nonlinearity lattice[4].
For further studies on moving ILMs, a precise estimation of
the initial conditions for generating moving ILMs is neces-
sary. Various methods of initial value estimation have been
studied and successfully generated relatively slow-moving
ILMs[5]. However, the initial condition for fast-moving
ILM generates not only the moving ILM but also the small
amplitude waves. In this report, we discuss the estimation
of initial conditions of moving ILMs using the spectrum of
static ILMs in the wavenumber-frequency domain.
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2. ILM in frequency-wavenumber domain

In this report, we consider a system as follows:

d2un

dt2 = −α1un − α2(2un − un−1 − un+1)

− β1u3
n − β2(un − un−1)3 − β2(un − un+1)3 (1)

where n = 1, · · · ,N and N denotes the total number of
oscillators. This system is called mixed lattice because
Eq.(1) becomes FPU lattice (α1 = 0, β1 = 0) and nonlin-
ear Klein-Gordon lattice(β2 = 0). The boundary conditions
are periodic in this study. The other parameters are set at
α1 = 0, α2 = 1, β1 = 0.625 and β2 = 0.375.

Let us consider a nonlinear map

F : {un(t)} → {un+r(t + T )}. (2)

This is a combination of the time evolution map and lat-
tice unit translation map, thus, the map that translates the
original solution by an integer lattice unit r after time T
has passed. Moving ILMs corresponds to a fixed point of
the map. Then the Newton-Raphson method is applied to
compute the moving ILM. We call them “numerically ex-
act moving ILM”. Note that we choose r = 1 and the num-
ber of oscillations during T is half-integer like 1.5, 2.5, ...,
10.5. Static ILMs are also obtained as a fixed point of the
map when r = 0. Let Tc and ωc be the vibration period and
frequency of oscillators.

Figure 1 shows the Fourier spectrum of numerically ex-
act static and moving ILMs in the wavenumber-frequency
domain which is obtained by 2D-FFT of the spatio-
temporal trajectories of each ILM. In Fig.1, the dispersion
relation for the linearized Eq.(1) is also shown by white
line. Since we consider the hard potential model as Eq.(1),
spectral distribution is located above the dispersion rela-
tion. For static ILMs, the frequency is constant regardless
of the wavenumber. On the other hand, for the moving
ILM, the spectral distribution appears with a slope that is
proportional to the velocity of moving ILMs. In Ref.[6], a
two-dimensional Fourier transform of a moving Gaussian
pulse in a continuous medium is given, and it is shown that
the spectrum component in the wavenumber-frequency do-
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(a) static ILM (b) moving ILM

Figure 1: wavenumber-frequency domain

(a) static ILM (b) moving ILM

Figure 2: Distribution of the spectrum

main has a slope corresponding to the moving velocity, and
the same result is obtained in the discrete system.

Figure 2 shows the wavenumber-frequency spectrum of
ILMs which is sampled along the bright line in Fig.1. The
spectral distribution of the moving ILMs is represented by
an extended wavenumber-frequency domain since it does
not end in the [0, 2π] range. For static ILMs, spectral distri-
bution is symmetric at k = π. For moving ILMs, although
the shape of the spectral distribution is similar to that of
the static one, the center of the distribution is shifted to the
lower wavenumber side. Figure 3 shows the deviation of
the center from k = π for various moving ILMs with Tc.
For the same Tc, there is a linear relationship between the
moving velocity and the deviation from the center. There-
fore, the deviation is easily obtained for any desired veloc-
ities.

Figure 4 shows a comparison of the wavenumber-
frequency spectrum of the static ILM and the moving ILM
with the same Tc. The spectrum for the moving ILM is
shifted using the linear relationship shown in Fig.3. The
blue curve is obtained by shifting the center of the spectrum
to k = π and the red curve is obtained by folding the spec-
trum in adjacent Brillouin zones into the 1st Brillouin zone
after the wavenumber shift. These are well matched and
we can assume that the spectrum of static ILMs is folded
into the 1st Brillouin zone.

In summary, the three things about differences in
wavenumber-frequency spectra between the static and
moving ILMs are important: the slope of the distribution,
the shift of the center position, and the assumption that
the spectrum of static ILMs is folded. In the next sec-
tion, based on the above, we will explain how to estimate
the initial conditions by reconstructing the wavenumber-
frequency spectrum of the moving ILM from that of the

Figure 3: Relation between velocity and deviation

Figure 4: shifted and folded wavenumber-frequency spec-
trum (a: static ILM, b: shifted moving ILM, c: shifted and
folded moving ILM)

static ILM.

3. How to estimate the initial value of moving ILMs

This section describes a method for estimating the ini-
tial conditions of moving ILMs. First, we calculate the
waveform of static ILMs with an exact solution and per-
form a 2D Fourier transform on the waveform. As shown in
Fig.1(a), the spectrum ψ(k) is extracted along the bright line
appearing in the wavenumber-frequency domain. Next, the
following function,

ψ(k) = A
(
e−

(k+π)2

2c2 + e−
(k−π)2

2c2 + e−
(k−3π)2

2c2
)
+ h(k) (0 < k < 2π)

= g(k) + h(k)
(3)

is fitted to the extracted spectrum to determine A and c

of Gaussian functions of g(k). In Eq.(3), e−
(k+π)2

2c2 repre-

sents the folded spectrum from [−2π, 0] and e−
(k−3π)2

2c2 from
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Figure 5: Division of Fourier spectrum of static ILMs

[2π, 4π]. Figure 5 shows g(k) and h(k) in Eq.(3). The ex-
tracted spectrum is successfully decomposed to the folded
Gaussian functions and a strongly localized component. To
construct the spectrum of the moving ILM, we shift the
center of distribution to the lower wavenumber side based
on the relationship between the deviation of the center of
spectrum and the desired velocity shown in Fig.3. Let the
absolute value of the deviation from the center be δ. The
wavenumber-frequency spectrum ψ̄(k) can be expressed as
follows:

ψ̄(k) = Ae−
(k−π+δ)2

2c2 + h(k + δ) (−2π < k < 4π). (4)

The obtained Fourier spectral distribution is placed in the
frequency-wave number domain with a slope correspond-
ing to the desired velocity. An initial condition is obtained
by the inverse Fourier transformation. In practice, the ini-
tial position un(0) is obtained according to the following
equation,

un(0) =
4π∑

k=−2π

ψ̄(k)e−kn. (5)

Since d/dt becomes −iω in the wavenumber-frequency do-
main, the initial velocity can be obtained by multiplying
−i(ωc − Vb(π − k)) to Eq.(5) as follows:

vn(0) =
4π∑

k=−2π

(
−i(ωc − Vb(π − k)

)
ψ̄(k)e−kn, (6)

where Vb[site/s] is the velocity of the moving ILM. In
this way, we can generate initial values for various ve-
locities Vb. Since higher harmonics also appear in the
wavenumber-frequency domain, the third and fifth harmon-
ics are also taken into account in the calculations for accu-
racy.

4. Result of estimation

Figure 6 shows an example of estimation results gener-
ated according to Sec.3. It can be seen that both the initial
position and the velocity are localized. The numerical sim-
ulation started from the obtained initial conditions is shown

(a) Initial position (b) Initial velocity

Figure 6: Result of estimation

Figure 7: Energy transitionion

in Fig.7, which shows the time evolution of the energy of
each oscillator. The energy en(t) of each oscillator is de-
fined as follows:

en(t) =
1
2

u̇n(t)2 +
α1

2
un(t)2 +

β1

4
un(t)4

+
1
2

(α2

2
(un(t) − un−1(t))2 +

β2

4
(un(t) − un−1(t))4

)
+

1
2

(α2

2
(un(t) − un+1(t))2 +

β2

4
(un(t) − un+1(t))4

)
.

(7)

The localization is maintained for a sufficiently long pe-
riod. This implies that the estimated initial condition is
sufficiently precise.

To investigate the efficacy of the estimation method, the
lifetime of generated moving ILMs are measured for vari-
ous Tc and Vb. To evaluate the lifetime, the center of the
moving ILM is first computed[7] by

X =
arg h
2π

N (8)

where

h =
N∑

n=1

{(1
2

u̇2
n +

α1

2
u2

n +
β1

4
u4

n

)
ei 2π

N n

+
(α2

2
(un − un−1)2 +

β

4
(un − un−1)4

)
ei 2π

N (n− 1
2 )
}
.

(9)

The energy of the core of the ILM is defined as follows:

Ecore(t) =
m+4∑

n=m−4

en(t), (10)

where m is the rounded integer of the center X. Then the
ratio of the core energy at t to the initial core energy is
defined as follows:

γ(t) =
Ecore(t)
Ecore(0)

. (11)
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Figure 8: TL99 for various Tc and s

Figure 9: Ratio of the obtained and set velocity for various
Tc and s

The first time TL99 that satisfies γ(t) < 0.99 is used as an in-
dicator of the localization lifetime[5]. Figure 8 shows TL99
for various Tc and s = 1

TcVb
. The simulation length is lim-

ited to 5000[s]. The brightness corresponds to the lifetime
of generated moving ILMs. The localization is generally
maintained in a wide range and this method can be applied
to various settings. In the high velocity and high energy
region, there are cases where the lifetime becomes short,
which will be investigated in future work.

Figure 9 shows the ratio of the obtained and desired mov-
ing velocity for various Tc and s. The velocity of gen-
erated moving ILM, Vb, is measured at the beginning of
the simulation, and s is computed by s = 1/(TcVb). We
measured velocity immediately after starting the calcula-
tion. The estimated initial condition generates rather faster
moving ILM than the desired one. The reason for it will be
examined in future work.

5. Conculusion

In this report, we describe a method for estimating the
initial conditions of moving ILM using a spectrum of static
ILMs in the wavenumber-frequency domain. This method
allows us to set a continuous value for the moving velocity,
unlike the numerically exact solution. We will apply this

estimation method to other models in the future.
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