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Abstract—We consider the scattering of small ampli-
tude waves (phonons) by a standing discrete breather in
two types of one-dimensional nonlinear lattices. Each lat-
tice has a particular symmetry in its equations of motion
and is known to exhibit quite anomalous heat transport:
one lattice exhibits the ballistic heat transport, i.e., no ther-
mal resistance, and the other an almost ballistic one. We
numerically calculate the transmission and reflection rates
of phonon wave packets with different wavenumbers. It is
shown that almost perfect transmission occurs in one lattice
while almost perfect reflection in the other.

1. Introduction

Discrete breather (DB) is spatially localized excitation
that can ubiquitously emerge in a variety of nonlinear
space-discrete dynamical systems in nature. The concept
of DB was introduced by Takeno et al. [1, 2]. Mathemat-
ically, DBs are time-periodic and spatially localized solu-
tions of the equations of motion in nonlinear lattices. Their
existence has been well established by rigorous mathemat-
ical analysis [3, 4, 5] and numerical computations [6, 7].
It is known that phonons can be scattered by DBs. The

scattering property has been numerically studied in the
nonlinear Klein-Gordon lattice [8, 9, 10] and the Fermi-
Pasta-Ulam-Tsingou (FPUT) lattice [9]. In weakly nonlin-
ear lattices, thermal energy is transported by phonons. So,
it is expected that there is some relation between the scat-
tering property and thermal conductivity of the lattice.
Recently, two types of one-dimensional nonlinear lat-

tices have been constructed, each of which has a partic-
ular hidden symmetry. These two lattices are named the
pairwise interaction symmetric lattice (PISL) [11, 12] and
the umklapp-free lattice (UFL) [13]. Both lattices are quite
anomalous in their heat transport properties: the UFL ex-
hibits the ballistic heat transport, i.e., the heat transport
with no thermal resistance, while the PISL exhibits the heat
transport close to the ballistic one. This fact suggests that
the two lattices show some anomalous properties in the
phonon-DB scattering process. In the present paper, we
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numerically study the scattering of phonons by DBs in the
PISl and the UFL.

2. Lattice model

Consider a class of one-dimensional nonlinear lattices
described by the Hamiltonian

H =
∞∑

n=−∞

1
2
p2n +

∞∑
n=−∞

μ1
2
(qn+1 − qn)2

+
β

4

∞∑
n=−∞

∞∑
r=1
br (qn+r − εrqn)4 , (1)

where qn and pn are the displacement and momentum of
nth particle, respectively, μ1 > 0 is the harmonic coupling
coefficient, β > 0 is the nonlinearity strength, br is the cou-
pling strength between the rth neighboring particles, and
ε ∈ {−1, 1}. This Hamiltonian describes general nonlinear
lattices of unit mass particles which have quartic two-body
interactions. Hamiltonian (1) describes the FPUT-β lattice
when br = δr,1 and ε = 1, where δr,1 is Kronecker’s delta.
The two symmetric lattices, PISL and UFL, are also given
by particular cases of Hamiltonian (1): the PISL is the case
of br = 1/r2 and ε = 1, and the UFL is the case of br = 1/r2
and ε = −1.
The equations of motion derived from Hamiltonian (1)

are given by

q̈n = μ1 (qn+1 − 2qn + qn−1)
+ β

∞∑
r=1
br
[
(εrqn+r − qn)3 − (qn − εrqn−r)3

]
, (2)

where n ∈ Z.

3. Symmetry of PISL and UFL

We consider the PISL (ε = 1) and the UFL (ε = −1) in
this section. Define the normal mode coordinates U(k) via
the discrete Fourier transformation

U(k) =
1√
2π

∞∑
n=−∞

(−ε)nqne−ikn, (3)
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where the range of wavenumber is k ∈ T ≡ (−π, π]. If we
rewrite Eq. (2) in terms of U(k), we can obtain the equation

Ü(k) + ν 2k U(k) =
4β
π

∫
T3
dk1dk2dk3φ0(k1, k2, k3, k)

× U(k1)U(k2)U(k3)δ(k1 + k2 + k3 − k), (4)
where U(k) depends on time t, φ0 is a time-independent
function of (k1, k2, k3, k), δ is Dirac’s delta function, and ν 2k
is the coefficient depending on ε and given by

ν 2k =

{
4μ1 cos2(k/2) if ε = 1,
4μ1 sin2(k/2) if ε = −1. (5)

Details of the derivation of Eq. (4) are described in [13].
Ordinary one-dimensional lattices with quartic poten-

tials such as the FPUT-β lattice have the mode couplings
specified by both k1+k2+k3−k = 0 and ±2π. Equation (4)
shows that four normal modes are coupled only when their
wavenumbers satisfy the condition k1+k2+k3−k = 0 while
the couplings of ±2π are not allowed. This mode coupling
rule is a peculiarity of the PISL and the UFL.
The equations of motion of PISL and UFL have a sym-

metry. In order to describe the symmetry, we introduce the
map Sλ defined by

Sλ : U(k) �→
{
U(k) exp[−ikλ] if k ∈ (−π, π),
U(k) if k = π, (6)

where λ ∈ R is a parameter. It can be shown that Eq. (4)
is invariant under the action of Sλ for any λ ∈ R. In this
sense, each of the PISL and UFL has a symmetry.

4. Discrete breather and phonon scattering

In Sec. 5, we will consider a finite-size lattice and numer-
ically integrate its equations of motion to investigate the
scattering of phonons by a DB placed in the middle of the
lattice. For this purpose, we need numerical DB solutions
of PISL and UFL. It is possible to numerically compute DB
solutions by using the Newton method (cf. [6]) although the
existence of DB solutions has not yet been proved for these
lattices.
In Fig.1, examples of DB profiles are shown for (a) PISL

and (b) UFL, where qn is shown at the time when the parti-
cles have the largest displacements. These examples were
calculated by using lattices of size N = 256 with periodic
boundary conditions. The DBs are time-periodic solutions.
For the PISL, they have staggered profiles such that each
pair of adjacent particles shows anti-phase oscillation. For
the UFL, some center part particles show in-phase oscilla-
tion while the other particles in tail parts show anti-phase
one. Comparison of the DB profiles for periods T = 2.0
and 2.8 indicates that the DB becomes more localized hav-
ing larger amplitude as the period T decreases or the fre-
quency Ω = 2π/T increases.
We will compare the phonon scattering properties of the

PISL and the UFL with that of the FPUT-β lattice in Sec. 5.

Figure 1: Spatial profile of even symmetric DB for (a) PISL
and (b) UFL, Profiles are shown for T = 2.0 (red), 2.8
(blue). Parameters are μ1 = 1 and β = 1.

It is possible to obtain numerical DB solutions also in the
case of the FPUT-β lattice (e.g., see [6, 7]). Moreover,
for this lattice, the existence of DBs has been rigorously
proved [4, 5].
In our numerical experiments, we use an approximate

version of PISL and UFL that has truncated long-range in-
teractions up to length M, which we call the truncated PISL
and the truncated UFL, respectively. The truncated lattices
are not exactly symmetric but the asymmetry becomes neg-
ligible for large M. The equations of motion of the finite-
size truncated PISL or UFL are given as follows:

q̈n = μ1 (qn+1 − 2qn + qn−1)

+ β

M∑
r=1
br
[
(εrqn+r − qn)3 − (qn − εrqn−r)3

]
, (7)

where n = 1, 2, . . . ,N and the fixed boundary conditions
q0 = qN+1 = 0 are assumed. The sum in Eq. (7 ) is taken
only for the terms (εrqn+r − qn)3 satisfying n + r ≤ N and
the terms (qn − εrqn−r)3 satisfying n − r ≥ 1.
We describe the procedure of our numerical experiments

of phonon scattering by DB. An even DB computed by the
Newton method is placed in the middle of the lattice at
t = 0 as the initial condition. In addition, we place a small-
amplitude phonon wave packet propagating to the right at
a position n = np left of the DB: this wave packet is given
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Figure 2: Schematic illustration of phonon scattering nu-
merical experiment.

by qn(0) = A(x) cos kx and pn(0) = ωkA(x) sin kx at t = 0,
where k ∈ (−π, π] is the wavenumber, ωk = 2√μ1 sin(k/2)
is the phonon frequency, x = n − np, and A(x) is an am-
plitude envelope such that 0 < A(x) 
 1 for x ∈ [0, L]
and otherwise A(x) = 0, where L is the wave packet length.
The phonon wave packet moves to the right and collides
with the DB, and then it is partly transmitted and partly re-
flected. We measure energy fluxes of the transmitted and
reflected waves at two positions n = nT and nR, respec-
tively, which are located right and left far away from the
DB. Figure 2 shows a schematic illustration of our numer-
ical experiments.
A harmonic approximation is used to measure the energy

flux since small-amplitude phonons are assumed. Let JT (t)
be the harmonic energy transported from nT th particle to
(nT+1)th one per unit time. This gives the harmonic energy
flux of the transmitted phonon, and we have

JT (t) = −μ1 (qnT+1 − qnT ) (pnT+1 + pnT ) /2. (8)

The total energy ET of the transmitted phonon wave packet
is calculated by integrating JT as follows:

ET =
∫ ∞
0
JT (t) dt. (9)

Similarly, we have JR(t) = μ1(qnR − qnR−1)(pnR + pnR−1)/2
and the total energy ER of the reflected phonon wave packet
is given by ER =

∫ ∞
0 JR(t) dt. In addition, we calculate the

total energy E0 of the incident phonon wave packet at a
point n = n0. We define the transmission rate rT and the
reflection rate rR as follows:

rT =
ET
E0
, rR =

ER
E0
. (10)

The relation rT + rR = 1 holds in good approximation for
small-amplitude phonons.

5. Numerical experiments

We carried out numerical experiments for the FPUT-β
lattice, the PISL, and the UFL. We compute rT and rR as
functions of the incident phonon wavenumber k for dif-
ferent values of the DB period T , numerically integrat-
ing Eq. (7) by using the Verlet scheme with time step
Δt = 0.01, where the parameters are μ1 = 1, β = 1,

Figure 3: Transmission rate rT vs phonon wavenumber k
for FPUT-β lattice. Results are shown for T = 2.0 (purple),
2.4 (green), and 2.8 (blue).

M = 128, and N = 5000. In each computation, at t = 0, an
even DB is placed on the lattice so that its center be located
between n = N/2 and N/2 + 1, and an incident phonon
wave packet of length L = 1000 is placed with its left end
at np = 850. The positions for measuring the transmit-
ted, reflected, and incident energies are set as nT = 4250,
nR = 750, and n0 = 1900.
In Fig. 3, the transmission rate rT of the FPUT-β lattice is

plotted against the incident phonon wavenumber k for three
different DB periods T = 2.0, 2.4, and 2.8. Almost perfect
transmission rT � 1 is observed for k close to zero while
rT approaches zero as k → π. For intermediate values of
k, rT is significantly smaller than unity, and rT decreases
as T becomes smaller when the value of k is fixed: the DB
becomes less transparent.
In Fig. 4, rT of the PISL is plotted against k. Compared

with the FPUT-β lattice, a remarkable feature is that rT � 1
holds for a wide range of k, i.e., the DB is transparent and
perfect transmission occurs for most of the wavenumbers.
Only for values of k close to π, the transmission rate rT
deviates from unity. It is conjectured that this transparency
may be somehow related with high thermal conductivity of
the PISL.
In Fig. 5, rR of the UFL is plotted against k. A remark-

able feature here is that rR � 1 holds for a wide range of
k, implying rT � 0. That is, the DB is opaque and per-
fect reflection occurs for most of the wavenumbers. Only
for values of k close to π, the reflection rate rR deviates
from unity, implying that those phonons can partly trans-
mit through the DB. This feature is in contrast with that of
the PISL and also quite different from the case of FPUT-β
lattice. The results in Fig. 5 suggest that phonons would be
strongly scattered by DBs if there emerge DBs in thermal
conduction states of the UFL, and that the UFL would have
a large thermal resistance. On the other hand, the ballistic
heat transport has been shown in the UFL [13]. It is con-
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Figure 4: Same as in Fig. 3 but for PISL.

Figure 5: Reflection rate rR vs phonon wavenumber k for
UFL. Results are shown for T = 2.0 (purple), 2.4 (green),
and 2.8 (blue).

jectured for these two aspects to be compatible that no DB
emerges in thermal conduction states of the UFL.

6. Conclusions

We studied the scattering of phonons by a standing DB
in the PISL and the UFL, numerically computing the trans-
mission and reflection rates of phonon wave packets. It was
found that almost perfect transmission rT � 1 occurs over
a wide range of wavenumber k of the incident phonon in
the PISL while almost perfect reflection rR � 1 over a wide
range of k in the UFL. These behaviors of rT or rR are much
different from that of the FPUT-β lattice.
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