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Abstract— The chaotic neural network reservoir (CNNR)
is a reservoir computing model that introduces the chaotic
dynamics to the reservoir layer neurons. One of the advan-
tages of using the CNNR is that it can be trained quickly
and accurately. However, the CNNR has many parameters
and it is very difficult to set all of them to suitable values.
To make parameter tuning easier, we proposed visualizing
the suitability of the parameter set using the complexity-
entropy causality plane (CECP). The results of numerical
experiments show that the CECP can visualize the suitabil-
ity of the parameter set of the CNNR. Specifically, we can
visualize the suitability of the parameter set as the distance
between the plot of the input data and the plots of the inter-
nal state reservoir layer neurons.

1. Introduction

Time series forecasting is one of the most important
tasks in machine learning. Reservoir computing (RC) [1]
is a recurrent neural network specialized in processing time
series. An RC system consists of three layers: the input
layer, the reservoir layer, and the output layer (Fig. 1). One
of the advantages of using the RC is that it can be trained
quickly and accurately. This is because only the weights
of the edges from the reservoir layer to the output layer are
trained. Horio proposed the chaotic neural network reser-
voir (CNNR) [2, 3], which introduces the chaotic dynam-
ics to the reservoir layer neurons by replacing their mod-
els with the chaotic neuron models [4]. The CNNR shows
a good performance for time series forecasting [5] and
speech recognition [6]. The ReLU CNNR [7], which uses
a piecewise linear function instead of a sigmoidal function
as an activation function of the chaotic neuron model, has
also been proposed. It can be trained and tested in a shorter
calculation time than the conventional CNNR.

The ReLU CNNR has many parameters that can be in-
fluenced by each other; thus, it is difficult to set all of them
to suitable values. To make the parameter tuning easier
for everyone, it is a good approach to visualize the suit-
ability of the parameter set. However, this approach has
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not yet been taken for the CNNR system. In this study,
we propose to use the complexity-entropy causality plane
(CECP) [8, 9] to visualize the suitability of the parameter
set to the ReLU CNNR. Specifically, we can visualize the
suitability of the parameter set as the distance on the CECP
between the plot of the original time series and the plots
of the internal state time series of reservoir layer neurons
in the ReLU CNNR. To evaluate the performance of the
proposed method, we conducted one-step forecasting using
the ReLU CNNR. From the results of the numerical exper-
iment, it is shown that the distance on the CECP between
the plot of the original time series and the plots of the inter-
nal state time series of reservoir layer neurons of the ReLU
CNNR is related to the root-mean-square error (RMSE) of
the forecasted time series from the original time series.

Figure 1: Structure of an RC

2. ReLU CNNR

The ReLU CNNR is an extension of the CNNR, which
uses the piecewise linear function instead of the sigmoidal
function as the activation function of the chaotic neuron
model in the reservoir layer. This replacement contributes
to shortening the calculation time for tuning and testing
the neural network. The internal state and output of the
chaotic neurons in the reservoir layer, z and x, are updated
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by Eqs. (1) and (2), respectively.

z(t + 1) =Winu(t + 1) +Wresx(t) + kz(t) − αx(t) + θ, (1)
x(t + 1) = f (z(t + 1)). (2)

The output of the output layer neurons is updated using
Eq. (3).

y(t + 1) = g(Woutx(t + 1)), (3)

where t is time, u is the external input, k is the damping
parameter, α is the refractoriness parameter, θ is the bias,
f and g are the activation functions, Win is the connection
weight of the edges from the input layer to the reservoir
layer, Wres is the connection weight of the edges in the
reservoir layer, and Wout is the connection weight of the
edges from the reservoir layer to the output layer. We use
Eq. (4), as the activation function f for the neurons in the
reservoir layer. We call it the tanh ReLU because it ap-
proximates the hyperbolic tangent function. The range of
the output of the tanh ReLU is restricted and becomes both
positive and negative values.

h(x) = min{max(x,−1), 1} =


1 (1 ≤ x)
x (−1 < x < 1)
−1 (x ≤ −1)

. (4)

We use ridge regression to train the ReLU CNNR. The up-
dating function of Wout using ridge regression is expressed
as follows:

Wout = g−1(Y te)X⊤(XX⊤ + βI)−1, (5)

where Y te is the matrix of the teacher signal, X is the output
matrix of the reservoir layer neurons, β is the regularization
parameter, and I is the identity matrix.

3. Complexity-Entropy Causality Plane

We use the CECP to visualize the suitability of the pa-
rameter set of the ReLU CNNR for forecasting the time
series. The permutation entropy [10] measures the ran-
domness of the time series. First, a partial time series of
length D is extracted from the original time series. Next,
its rank-order pattern is computed. This procedure is re-
peated until the probability distribution P of the time series
pattern is obtained. The permutation entropy HS (P) is de-
fined by Eq. (6), which normalizes the Shannon entropy of
P by its maximum value.

HS (P) =
S (P)

ln(D!)
. (6)

Next, we consider the complexity of a time series. A
completely disordered state can be represented by a ran-
dom number, and its complexity is 0. On the other hand,
the complete disequilibrium state can be represented by a
single state, and its complexity is also 0. Here, the dis-
equilibrium QJ is defined using the Jensen–Shannon di-
vergence J(P, Pe) = S (P/2 + Pe/2) − S (P)/2 − S (Pe)/2.

QJ(P, Pe) = J(P, Pe)/Qmax, where Pe is the equiprobabil-
ity distribution, and Qmax is the maximum possible value
of J(P, Pe). Permutation statistical complexity CJS consid-
ering randomness and disequilibrium is defined by Eq. (7).

CJS = HS (P)QJ(P, Pe). (7)

A diagram obtained by plotting the permutation entropy HS

on the horizontal axis and the permutation statistical com-
plexity CJS on the vertical axis on a two-dimensional plane
is called the CECP [8, 9].

4. Numerical Experiments

We investigated the relationship between the suitability
of the parameter sets, or RMSE of the forecasted time se-
ries from the original time series in the one-step forecast-
ing task and the distance on the CECP between the plot of
the original time series and the plots of the internal state
time series of the reservoir layer neurons. We used the lo-
gistic map (Eq. (8)), the x-coordinate of the Lorenz equa-
tion (Eq. (9)), and the x-coordinate of the Rössler equation
(Eq. (10)) to generate the original time series.

xt+1 = 3.8xt(1 − xt), (8)
ẋ = 10(y − x)
ẏ = x(28 − z) − y

ż = xy − 8/3z
, (9)


ẋ = −y − z

ẏ = x + 0.398y

ż = 2 + z(x − 4)
. (10)

The time series were normalized to [−1, 1]; the length of
the training data was set to 10, 000; the one-step forecasting
was performed for 6, 000 steps; and the number of neurons
in the reservoir layer was set to 100. The edges from the
input layer to the reservoir layer, in the reservoir layer, and
from the reservoir layer to the output layer were connected
randomly based on the connecting probabilities 0.3, 0.1,
and 0.5 respectively. The Win,Wres, and Wout were initial-
ized by uniformly distributed random numbers of [−1, 1].
The spectral radius of Wres was set to 0.3 for the Logistic
map, and set to 0.7 for the Lorenz and Rössler equations.
The regularization parameter of the ridge regression was
set to 1.0 × 10−9. The identity function g(x) = x was used
as the activation function of the neurons in the output layer.
We used the RMSE, defined by Eq. (11), to evaluate the
accuracy of the forecasting.

RMSE =

√√
1
n

n∑
i=1

(yte(i) − y(i))2, (11)

where n is the number of data and yte is the teacher sig-
nal. We changed k and α from 0.0 to 0.9 per 0.1, and θ
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(a) Logistic map, RMSE = 0.0641 (b) Logistic map, RMSE = 0.185

(c) Lorenz equation, RMSE = 5.01 × 10−4 (d) Lorenz equation, RMSE = 5.09 × 10−3

(e) Rössler equation, RMSE = 4.46 × 10−5 (f) Rössler equation, RMSE = 5.13 × 10−4

Figure 2: The CECP (D = 6) of the original time series and the time series of the internal state of the reservoir layer
neurons of the ReLU CNNR. The distance between the plot of the original time series and the time series of the internal
state of the reservoir layer neurons of the ReLU CNNR is close where the RMSE is small.
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from −0.4 to 0.0 per 0.1. The CECPs that have the best
and worst RMSE values are shown in Fig. 2, and their pa-
rameters are listed in Table 1. From Fig. 2, the RMSE of

Table 1: Parameters of the chaotic neuron models.

Logistic map Lorenz equation Rössler equation
(a) (b) (c) (d) (e) (f)

k 0.2 0.7 0.0 0.8 0.1 0.9
α 0.0 0.3 0.2 0.8 0.1 0.7
θ -0.4 -0.4 0.0 -0.4 0.0 0.0

the forecasted time series from the original time series be-
comes small where the plot of the original time series and
the plots of the internal state time series of the reservoir
layer neurons are closely distributed. On the other hand,
the RMSE of the forecasted time series from the original
time series becomes large where the plot of the original
time series of the internal state time series of the reservoir
layer neurons is widely distributed. From these results, it is
seen that the CECP becomes a good indicator for adjusting
the hyperparameters.

5. Conclusions

The ReLU CNNR is an RC framework that uses the
chaotic neuron model as the reservoir layer neurons and the
piecewise linear function as the activation function of the
chaotic neuron models. The ReLU CNNR can be trained
quickly and accurately. However, the parameter tuning of
the ReLU CNNR is very difficult because it has many pa-
rameters. To facilitate parameter tuning, we proposed to
use the CECP to visualize the suitability of the parameter
set by using the CECP.

We numerically investigated the relationship between
the RMSE of the forecasted time series from the original
time series distance on the CECP between the plot of the
original time series and the plots of the internal state time
series of the reservoir layer neurons. The results of numer-
ical experiments showed that the RMSE of the forecasted
time series from the original time series becomes small
where the plot of the original time series and the plots of
the internal state time series of the reservoir layer neurons
of the ReLU CNNR are closely distributed. These results
indicate that the CECP may be a good indicator of an ap-
propriate parameter set.
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