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Abstract–. We use reservoir computing to replicate the 

long-term dynamics of a chaotic semiconductor laser with 

optical feedback. The real and imaginary parts of the 

electric-field amplitude are used as an input signal for 

reservoir computing. The attractor of the real and imaginary 

parts is successfully replicated with high accuracy using 

reservoir computing. 

1. Introduction 

 

Neural networks have been actively studied in recent 

years. Neural networks are information processing 

technologies that mimic the human brain, and used for 

various information processing such as image classification. 

Neural networks with mutual coupling between nodes and 

self-feedback are called recurrent neural networks, and are 

suitable for time-dependent data processing such as speech 

recognition. While recurrent neural networks have high 

information processing capabilities, they have a 

disadvantage that the learning algorithm is complex and 

computationally expensive because all weights of the 

connections must be learned. 

Reservoir computing is a concept derived from recurrent 

neural networks [1]. Unlike recurrent neural networks, the 

input weights and network weights among the nodes are 

fixed randomly, and only the output weights are optimized 

by learning, which reduces the computational complexity 

in learning. Physical implementation of reservoir 

computing has also been reported, because it is easy to 

implement reservoir computing using a single nonlinear 

element of a physical device [2-6]. 

One of the applications using reservoir computing is the 

replication of nonlinear dynamics [7-9]. It is possible to 

reproduce the dynamics of a target model by learning only 

from time series data using reservoir computing. 

Replication of various nonlinear dynamical models has 

been reported, and replication of more complex models is 

needed. One of the nonlinear dynamical models is a 

semiconductor laser with optical feedback [10]. The 

dynamics of this model is characterized by high 

dimensionality of complex electric-field amplitude due to 

the existence of time-delayed feedback, which results in 

multiple positive Lyapunov exponents. Replication of such 

a complex dynamics of the semiconductor laser optical 

feedback has not been reported yet using reservoir 

computing.  

In this study, we replicate the dynamics of a 

semiconductor laser with optical feedback using reservoir 

computing. The replication is performed using the temporal 

waveforms of the electric-field amplitude of the target laser 

dynamics. The similarity of the replicated temporal 

waveforms to the original waveforms are evaluated by 

comparing FFT and autocorrelation function . 

 

 

2. Reservoir computing using echo state network 

 

Figure 1 shows a schematic diagram of reservoir 

computing using echo state network. Reservoir computing 

consists of an input layer, a reservoir layer, and an output 

layer. The input signal is sent from the input layer to the 

reservoir layer using a randomly fixed input weight 

matrix 𝐖in The nodes in the reservoir layer are connected 

by randomly fixed coupling weight matrix 𝐖res   In the 

reservoir layer, a nonlinear transformation is performed to 

update the node state vector 𝐫(𝑡)  through a high-

dimensional mapping. The formula of the node state is 

described as follows. 

 

𝐫(𝑡 + Δ𝑡) = 𝛼 𝐫(𝑡) + 𝛽𝑓(𝐖res𝐫(𝑡) + 𝐖in𝐮(𝑡) + 𝐖b)(1) 

 

where 𝐮(𝑡) is the input vector and 𝐖b is the random bias 

matrix, where 𝐖b consists of uniform random numbers in 

Fig. 1 Schematic diagram of reservoir computing using echo 

state network. 
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the range [-1,1]. 𝛼 is the leakage rate and 𝛽 is the input gain. 

By changing the parameter values of 𝛼 and 𝛽, the influence 

from the previous state can be varied. 𝑓(∙) is a nonlinear 

function, where tanh(∙)  is used in this study. In the output 

layer, the output is obtained by calculating a weighted 

linear sum of the nonlinear node states and the output 

weight matrix  𝐖out  that are optimized by learning. The 

expression of the output 𝐲(𝑛) is described as follows. 

 

𝐲(𝑛) = 𝐖outr(𝒕)      (2) 

 

𝐖out is optimized by the least-squares method.The formula 

of the optimization of 𝐖out is described as follows. 

 

𝐖out = 𝐃𝐗𝐓(𝐗𝐗𝐓 + λ𝐈)      (3) 

 

where 𝐃 is the target matrix, and 𝐗 is the matrix obtained 

from the node states. 𝐈 is the identity matrix, and 𝜆 is the 

ridge parameter. The addition of the ridge parameter 

suppresses over-training. 

 

3. Laser dynamics of target signal 

 

The dynamics of a semiconductor laser with optical 

feedback is numerically calculated as a target signal for the 

replication of nonlinear dynamics using reservoir 

computing. The Lang - Kobayashi equation is used as the 

numerical model [10]. The Lang - Kobayashi equation is 

described as follows. 

 
𝑑𝐸𝑟𝑒(𝑡)

𝑑𝑡
=

1

2
[

𝐺𝑁(𝑁(𝑡) − 𝑁0)

1 + 𝜖(𝐸𝑟𝑒
2 (𝑡) + 𝐸𝑖𝑚

2 (𝑡))
] [𝐸𝑟𝑒(𝑡) − 𝛼𝐸𝑖𝑚(𝑡)] 

+𝜅[𝐸𝑟𝑒(𝑡 − 𝜏)𝑐𝑜𝑠(𝜔𝜏) + 𝐸𝑖𝑚(𝑡 − 𝜏)𝑠𝑖𝑛(𝜔𝜏)]                        (4) 
𝑑𝐸𝑖𝑚(𝑡)

𝑑𝑡
=

1

2
[

𝐺𝑁(𝑁(𝑡) − 𝑁0)

1 + 𝜖(𝐸𝑟𝑒
2 (𝑡) + 𝐸𝑖𝑚

2 (𝑡))
] [𝛼𝐸𝑟𝑒(𝑡) + 𝐸𝑖𝑚(𝑡)] 

+𝜅[−𝐸𝑟𝑒(𝑡 − 𝜏)𝑠𝑖𝑛(𝜔𝜏) + 𝐸𝑖𝑚(𝑡 − 𝜏)𝑐𝑜𝑠(𝜔𝜏)]                     (5) 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝐽 −

𝑁(𝑡)

𝜏𝑠
−

𝐺𝑁(𝑁(𝑡) − 𝑁0) (𝐸𝑟𝑒
2 (𝑡) + 𝐸𝑖𝑚

2 (𝑡))

1 + 𝜖 (𝐸𝑟𝑒
2 (𝑡) + 𝐸𝑖𝑚

2 (𝑡))
      (6) 

 

where 𝐸𝑟𝑒(𝑡) is the real part of the complex electric field, 

𝐸𝑖𝑚(𝑡) is the imaginary part of the complex electric field, 

and 𝑁(𝑡) is the carrier density. The dynamics of the laser 

intensity 𝐼(𝑡) can be calculated by adding the squares of the 

real and imaginary parts, i.e., 𝐼(𝑡) = 𝐸𝑟𝑒
2 (𝑡) + 𝐸𝑖𝑚

2 (𝑡). 𝜏 is 

the delay time and it is set to 5 ns.  

Chaotic temporal waveforms of the laser intensity can be 

obtained by simulating Eqs.(4)-(6). The obtained temporal 

waveforms are sampled at the sampling interval is 0.01 ns. 

The average period of the chaotic temporal waveforms is 

0.65 ns, which is approximately 65 points per period. This 

temporal waveform is normalized by the mean of 0 and 

three times the standard deviation. The normalization 

formula is described as follows. 

 

𝑥(𝑡) =
𝐼(𝑡)−𝜇

3𝜎
                                                                     (7)   

where 𝜇 is the mean of the chaotic temporal waveform and 

𝜎  is the standard deviation of the chaotic temporal 

waveform. We replicate the dynamics of the normalized 

chaotic temporal waveform using reservoir computing. 

 

 

 

4. Replication method 

 

Figure 2 shows the schematic diagram of our replication 

scheme for nonlinear dynamics using reservoir computing. 

In Fig. 2(a), the output weights are trained so that the output 

signal is close to the target signal, which is the one-point-

ahead input signal. In Fig. 2(b), the output obtained from 

the reservoir is fed back to the input part to operate 

autonomously. In this way, reservoir computing can 

reproduce the trained temporal dynamics. 

 

5. Replication results 

 

We replicate the laser dynamics calculated from the Lang 

-Kobayashi equations using reservoir computing. The input 

signal is the temporal waveforms of the laser intensity. The 

reservoir parameters are set to 𝛼 = 0   and 𝛽 = 1  with 

100000 training points and 5000 nodes for the echo state 

network. The input vector of reservoir computing consists 

of the real and imaginary parts of the complex electric-field 

amplitude ( 𝐸𝑟𝑒(𝑡)  and 𝐸𝑖𝑚(𝑡) ), and their time-delayed 

signals shifted by the delay time 𝜏 (𝐸𝑟𝑒(𝑡 − 𝜏) and 𝐸𝑖𝑚(𝑡 −
𝜏)).  

We include the time-delayed signals in the input signal 

because small correlation of the chaotic temporal 

waveforms exists at the delay time 𝜏. It is important to add 

the delay information to the input, because the laser 

Fig. 2 Prediction scheme. (a) Open-loop configuration 

for training phase and (b) closed-loop configuration for 

prediction phase. 
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dynamics is determined by the current state and the state 

before the delay time.  

The laser intensity is calculated from the sum of the 

squares of the real and imaginary parts. However, the real 

and imaginary parts contain both the intensity and phase 

information, it is expected that both the laser intensity and 

phase can be replicated by using reservoir computing.  

The feedback signal from the reservoir output in Fig. 

2(b) consists of the one-point-ahead signals of the real and 

imaginary parts  (𝐸𝑟𝑒(𝑡 + 1)  and 𝐸𝑖𝑚(𝑡 + 1) ), and their 

time-delayed outputs (𝐸𝑟𝑒(𝑡 − 𝜏 + 1) and 𝐸𝑖𝑚(𝑡 − 𝜏 + 1)).  

 

 

 

Figure 3 shows the replication results. The black line in 

Fig. 3(a) shows the target signal of the laser intensity, and 

the red line shows the replicated temporal waveform by 

using reservoir computing. The two temporal waveforms 

are not matched well. Figure 3(b) shows the enlarged view 

of Fig. 3(a). In Fig. 3(b), the replicated temporal waveform 

is close to the target waveform for a short period of time.  

The lack of long-term prediction is due to the sensitive 

dependence of initial conditions of chaos, where the small 

error can significantly change the long-term behavior. 

However, the long-term statistical characteristics of the 

replicated temporal waveforms seems similar to the 

original dynamics, as shown in Fig. 3(a), even though the 

temporal waveforms are not matched perfectly. This is 

because reservoir computing can learn the characteristics 

of the laser dynamics. 

 
 

Fig. 4 (a) Fast Fourier transforms (FFT) and (b) autocorrelation 

functions of (black) target signal and (red) replicated signal. 

 

To evaluate the statistical characteristics of replicated 

temporal waveforms, we calculate fast Fourier transform 

(FFT) and autocorrelation function of the temporal 

waveforms. Figure 4(a) shows the FFTs of the target and 

replicated temporal waveforms. The two FFTs looks very 

similar and the peaks of the FFTs are matched well. We 

calculate the correlation value of the two FFTs. The 

correlation value is 0.9993 and high correlation is obtained. 

Figure 4(b) shows the autocorrelation function of the 

original and replicated temporal waveforms. The two 

autocorrelation function overlaps very well. We also 

calculate the correlation value of the two curves. The 

correlation value is 0.9996, and very high correlation is 

obtained.  

Figure 5 shows the chaotic attractors of the original and 

replicated dynamics. The chaotic attractors are 

reconstructed by using 𝐼(𝑡) and 𝐼(𝑡 − 𝜏). The original and 

replicated attractors look very similar.  

We calculate the Kullback-Leibler divergence as a 

statistical evaluation of the similarity of the original and 

replicated attractors. The calculation equation is described 

as follows. 

Fig. 3 Result of replication of laser intensity. (a) 

Replication result. (black) target signal, and (red) 

prediction signal. (b) Enlarged view of (a). 
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𝐷𝐾𝐿(𝑃||𝑄) = ∑ 𝑃(𝑖) log
𝑃(𝑖)

𝑄(𝑖)
   

𝑖

                                       (8) 

where 𝑃(𝑖) is the probability distribution of the replicated 

attractor and 𝑄(𝑖)  is the probability distribution of the 

original attractor. Smaller Kullback-Leibler divergence 

indicates more similar attractors. The Kullback-Leibler 

divergence is calculated from Fig. 5 and the value of 

0.01558 is obtained. This result indicates that very similar 

attractors are obtained, and we succeed in replicating the 

complex laser dynamics by reservoir computing. 

 

 
Fig. 5 (a) Original and (b) replicated attractors for laser intensity 

in the time-delayed phase space. 

 

In our scheme, we use four input signals for training, 

which are the real and imaginary parts of the complex 

electric field (𝐸𝑟𝑒(𝑡)  and 𝐸𝑖𝑚(𝑡) ), and their time-delayed 

signals (𝐸𝑟𝑒(𝑡 − 𝜏) and 𝐸𝑖𝑚(𝑡 − 𝜏). The use of these input 

signals is essential to replicate complete laser dynamics, 

because both the intensity and phase dynamics can be 

calculated from these variables. In addition, the inclusion 

of time-delayed signals is also important to replicate the 

dynamics of time-delayed systems. 

 

6. Conclusions 

We replicated the dynamics of laser intensity of a 

semiconductor laser with optical feedback using reservoir 

computing with echo state network. The Lang-Kobayashi 

equations were used to generate a target signal of the 

chaotic laser dynamics. The real and imaginary parts of the 

complex electric-field amplitude of the laser output were 

used as an input signal to the reservoir, as well as their time-

delayed signals. We performed short-term prediction of the 

chaotic temporal waveforms. We also succeeded in 

replicating the long-term dynamics of temporal waveforms 

by using reservoir computing, and the FFT, autocorrelation 

function and chaotic attractor are well reproduced. Our 

method can be applied to real experimental data for the 

replication of long-term nonlinear dynamics. 
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