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Abstract—In this paper, a chaotic modulation
scheme using chaotic cyclic attractor (CCA) is pro-
posed, with a non-coherent receiver. The demodu-
lation relies on the frequency property of CCA that
the majority energy of the iteration is approximately
distributed in a deal of main frequencies; and these
frequencies are determined by the order of CCA. The
comparison of performance with DCSK is given, and
also the multipath prospect.

1. Introduction

There are several ways to classify the digital mod-
ulation schemes in communication systems, among
which there is an approach which uses the types of
modulation carriers to distinguish[1]: (1) fixed wave-
forms as carriers, or (2) continuously varying wave-
forms as carriers. It’s known that the conventional
modulation schemes use the fixed waveforms, usually
sinusoidal-based carrier waves; and chaotic modula-
tion schemes, in the contrast, take the continuously
varying waveforms, i.e., chaotic waveforms, as refer-
ence waves. Normally, different symbols are mapped
to different chaotic reference waveforms, which vary
even for the same symbol value.

As long as demodulation is concerned, generally we
can use coherent or non-coherent techniques. In a co-
herent receiver, it requires to regenerate the basis func-
tions, independently of the modulation, which is diffi-
cult to realize, especially when the poor propagation
conditions are concerned in the wireless communica-
tions. If the basis functions are impossible to recover,
a non-coherent receiver needs to be considered, which
includes: (1) Transmitted Reference (TR) -based auto-
correlation receiver, e.g., Differential Chaos Shift Key-
ing (DCSK)[2][3]; (2) differentially encoded a prior to
modulation plus a non-coherent receiver, e.g, ampli-
tude detection receiver for ASK, Pulse Polarity Mod-
ulation (PPM) and Chaos On-Off Keying (COOK),
phase detection receiver for PSK, frequency detection
receiver for FSK, etc.

By now, there doesn’t exist any literature deal-
ing with the use of phase or frequency detection
non-coherent receiver for chaotic modulation schemes.
Usually we focus on changing the principles of mod-

ulation or demodulation in order to increase the per-
formance, but neglect the possibility of replacing the
basis functions by special chaotic attractors, e.g., the
iterations of attractors which have some special fre-
quency or phase properties, thereby can be used to
realize the demodulation more easily, even with better
performance.

In this article, we are going to introduce one of
these special chaotic attractors, chaotic cyclic attrac-
tors (CCA), which have some special frequency proper-
ties. And based on these frequency properties, we pro-
pose another chaotic modulation scheme, using CCA,
and demodulated by a non-coherent frequencies detec-
tion receiver.

2. Chaotic Cyclic Attractor

Several chaotic systems generate iterations as spe-
cial attractors, i.e., chaotic cyclic attractors (CCA),
under certain conditions, e.g., given parameter values
and initial conditions. CCAs are one type of chaotic
attractors which are composed by several cyclic and
disjointed chaotic areas, and the iterations jump from
one area to another regularly, with the position in each
area chaotic. We use a simple sinusoidal filter system
to generate this phenomenon, which is given by the
following equation:

Tna1 = sin (amx, + bryy) (1)
Yn+1 = Tn

with the block diagram shown in Fig.1.
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Figure 1: Block diagram of the non-linear system

As a non-linear differential system, system(1) ex-
hibits a quasi-periodic solution via Neimark-Sacker
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bifurcation, which is often locked into various peri-
odic motions by changing parameter values, and the
Arnold’s tongue structure[4] can also be found in the
two-parameter bifurcation diagram (a,b). Through
calculating the isoclines of the fixed point with differ-
ent specified arguments of complex multipliers [5] and
the period-doubling and tangent bifurcation of (1), we
can obtain the parameter values around which exist
the different orders of cycles or CCAs. Fig.2 shows
the simulated result of the bifurcation diagram.
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Figure 2: Bifurcation diagram of (1), colored areas
denote the cycles of order K < 14, with K differed by
the colors, and black areas represent cycles of order
K > 14 or chaos.

It is known that the parameter values in the bifur-
cation diagram plane (a,b) for generating CCA of or-
der K situates around the parameter zone correspond-
ing to the cycle of order K, usually under the cor-
responding Arnold’s tongue. For example, through
calculating, we found that (1) with the parameters
(a = 0.3590,b = —0.6184) generates the CCA of order
31, with the iteration in phase plane shown in Fig.2.a.
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Figure 3: The iteration of CCA order 31 of system (1)
in phase plane (a) and the corresponding PSD (b).

As the iteration of CCA of order ¢ has the char-
acteristics of both non-periodicity and hopping reg-
ularly among ¢ different zones of the attractor, it’s
obvious that the frequency distribution of this itera-
tion should be represented by lots of frequency peaks,

among which the main one locates at 2%” in the [o, 7]
lower half frequency band, and several secondary ones
locate at 222, Here 2 is related to the complex multi-
plier of the isocline[5], where p, g are coprime, p,p’ < g,
p' # p, and the possibilities of p’ are determined by
the attribution of the CCA. The corresponding power
spectral density (PSD) of the iteration of CCA of order
31 is shown in Fig.2.b.

The PSD of z, shown in Fig.2.b. indicates that
the magnitude of the main frequency is at least 15dB
greater than the other frequencies, definitely it’s more
a narrow band waveform than a large band one. The
performance of this kind of carrier will degrade quickly,
even entirely lost if it’s transmitted through a mul-
tipath propagation where exists a deep frequency-
selective fading effect.

In order to keep the property of large frequency
band, we need to add some function modules in the
chaotic generator in Fig.1 to lower the magnitude of
the main frequency 222 in PSD, or proportionally
enhance the other secondary important frequencies
as 2”—11/, hence widen the frequency band which the
chaotic iteration takes. Through simulation, we found
that the two modules added to the CCA generator in
Fig.4 can help us to reach this object, which are:

(i) Folding module: a function to fold up the attractor
on itself towards the origin of the phase plane, by us-
ing x5, = sign(z,) (1 — |z,|), hence the dominance of
the main frequency is considerably reduced, meanwhile
many other comparable frequency peaks appear. The
iteration of s, in phase plane and frequency domain
are shown correspondingly in Fig.5.a. and Fig.5.b.
(ii) Cubing module: a function to lower the ampli-
tude of each iteration in an exponential way, by using
Ze, = x?cn. The iteration of z.,, in phase plane and fre-
quency domain are shown accordingly in Fig.5.c. and
Fig.5.d.
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Figure 4: Folding and Cubing are added to form the
new chaotic generator

Through observing the PSD results, we can see that
all the main frequencies of iteration x., locate in %7
with £ = 1,2,...30, and the differences among their
magnitudes are at most 5dB. This waveform takes
a really large band in the frequency domain, from 0
to F's, with F's equals to the oscillation frequency of
the chaotic generator. After analysing several different

orders of CCA, we can come to a general conclusion
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Figure 5: The frequency distribution of the iterations
with Folding and Cubing modules

that, for the iteration of the CCA generator of order
q in Fig.4, PSD has a special distribution: it has ¢
main frequencies which occupy most of the power, and
locate correspondingly in ¥7 k=1,2,..q— 1.

As a result of this frequency attribution, the chaotic
iteration has the following attractive properties:
(1) Because the iteration is represented by lots of main
frequencies distributed in the large band, the energy of
the iteration is shared by them, as a result, each main
frequency occupies less than %Eb7 with the reduction
proportional to the order of CCA p. Ultra large-band
communication systems usually reuse the already oc-
cupied radio band, and in order to avoid the interfer-
ence to the conventional system, the PSD should be
as low as possible. So talking about applying CCASK
in UWB, we should use low symbol energy, and take
the bigger p to get even lower PSD.
(2) Because the probability that multipath completely
cancels all the signal frequencies is opposite to the fre-
quency bandwidth, the large band lowers the sensitiv-
ity to multipath effects.
(3) Because the frequencies are distributed almost av-
eragely in the whole angular period 27, the Fourier
Transform module can be used directly in frequency
detection, in order to reduce the complication of the
receiver.

Based on these properties, we propose here another
chaotic modulation scheme, which uses the iterations
as shown in Fig.5.c.-d. as basis functions for modu-
lation, and the method of Fourier Transformation as
demodulation. The principles will be given in the next
section.

3. The principle of CCASK

Chaotic Cyclic Attracotr Shift Keying (CCASK)
is concerned with mapping symbols to chaotic wave-
forms generated by different orders of CCA genera-
tors, whose frequency property can be represented by
lots of main frequencies distributed almost averagely
in the large frequency band [0, F's], with F's equals to
the oscillation frequency of the chaotic generator. In
this section, we will present the introduction of the
simplest binary CCASK.

3.1. Binary CCASK Modulation

In the simplest case of binary CCASK, only two dif-
ferent orders of CCA generators should be used, i.e., a
CCA generator of order gp when a symbol '0’ is trans-
mitted, and another CCA generator of order ¢; when
1’ is transmitted, and for each symbol, the chip rate
is L chips per symbol.

When a symbol data i’ (i = 0, 1) has to be transmit-
ted, a sequence of L elements {x((fn)} (n=0,1,..,L-1)
is generated by the CCA generator with parameters
(a;,b;), and sent into the propagation channel. Thus
the expression of n'" chip of m*!* symbol, s,,(n), with
the input binary symbol d,, (d,, = i) is given by:

Sm(n) = dma:g) +(1- dm):cg(i) (2)

and the general expression of a chip at the output of
the modulation system is s((m — 1)L + n) = sp(n).

3.2. Binary CCASK Demodulation

The non-coherent receiver relies on the distribu-
tion of the main frequency peaks of each received
symbol, which should be possibly filtered and noised
by the communication channel, here we denote it as
Sm (1) + by (n), with by, (n) the filtered noise. Through
application of the Discrete Fourier Transform (DFT)
method on the received symbol, we can easily get the
magnitudes of the main observating frequencies as

L-1

> (gm(n) + Bm(n)) oi2mn

n=0

Al (k) = (3)

where kK = 1,2,...,q; — 1, and ¢ = 0,1. Obviously,
the decision variable D,,, for the m!" received symbol
should be the difference between the magnitudes of the
above two groups of frequencies, as

a—1 1 qgp—1 o
D=y mB Y el
k=1 k=1

g —1 9o

Consequently, the demodulated symbol, ci,m can be

given by
- 1, ifD,>0
m T ()7

if D,, <0 (5)
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4. Comparison of Noise Performance

As a result of the non-coherent frequencies demodu-
lation, the bit energy of CCASK doesn’t need to keep
constant as differentially coherent DCSK[6]. Due to
the quasi-periodicity of CCA, the difference among the
magnitudes of the observed frequencies is proportional
to the chip rate L, i.e., proportional to the symbol du-
ration 7. In contrast, actually the observed frequen-
cies are fixed in the unit of angular frequency for each
CCA, so the noise performance doesn’t depend on the
RF bandwidth 2B, dislike DCSK. This means that if
we don’t consider the different interferences from the
different frequency bands, we can arbitrarily select the
bandwidth and obtain the same BER performance.

For the sake of application of CCASK in the scene of
Low-Rate UWB, we suppose in our simulation a high
chaotic oscillation rate, e.g., F's = 2GHz, so that the
corresponding frequency band is 2B = 2GHz. Fig.6.
shows the simulated noise performance of CCASK
through an AWGN channel, based on the factors:
qo = 29, ¢1 = 31 for 10° symbols. From right to left,
the dashed curves show the results of simulations with
L = 200,400,600, so that the corresponding symbol
durations are T = 0.1us,0.2us,0.3us. For compari-
son, the theoretical noise performances of DCSK with
the same values of BT are given as solid lines from
left to right, corresponding to the approximate expres-
sion of the noise performance of DCSK using stochastic
technique in [3].

We can see that the performance of CCASK aug-
ments with the increase of T, in contrast, the perfor-
mance of DCSK reduces. For T' = 0.3us, the noise
performance of binary CCASK is already more than
3dB better than DCSK for BER = 1074, with the
data rate about 1—30M bps. As the data rate decreases
with the increase of T, we believe that CCASK is a
good choice for a Low-Rate UWB modulation scheme.
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Figure 6: Simulated noise performance of binary
CCASK (dashed curves), from right to left, the bit du-
rations are 0.1pus,0.2us,0.3us. Comparison of the cor-
responding noise performance of DCSK (solid curves)
from left to right.

5. Conclusion

After decades of research by many researchers in
the chaotic communication domain, represented by G.
Kolumban, M. P. Kennedy, etc., there exists the the-
ory and performance limits for the chaotic modulation
schemes comparing with the conventional ones, espe-
cially in the narrow-band applications, and the most
promising scene should be the wide-band or even ultra
wide-band applications, e.g., WLAN, UWB. [1][6]

As a result of the wide-band carriers and low com-
plexity of transceiver of CCASK, together with the
better performance comparing with DCSK in the long
symbol duration application (where CCASK can en-
hance the noise performance in exchange with the
transmitting data rate), we propose that CCASK is
a good choice for Low Rate UWB application.

The multipath and multi-user performances of
CCASK, and also the solution of reducing the inter-
ference by the running applications in the occupied
frequency bands are being researched.
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