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Abstract—In this paper we study a facility location

problem in the form of transportation network. Based on

the cavity method developed in statistical physics, we de-

rive a message passing (MP) algorithm for solving this

problem. Moreover, we develop an MP guided decimation

strategy to facilitate convergence of the algorithm in loopy

networks. Optimal locations of facilities in tilted square lat-

tices and the corresponding scaling behaviours in different

regimes are also discussed.

1. Introduction

Optimizing the locations of facilities is crucial in com-

munication and supply networks. On one hand, a compre-

hensive coverage on a relevant region with facilities, e.g.,

outlets or sensors, is essential in supply networks or sensor

networks [1, 2]. On the other hand, maintaining high level

of coverage can be costly since extensive resources need to

be transported to destinations to satisfy the demands. It is

of great practical importance to strike a balance between

expanding network coverage and increasing transportation

cost. Traditional methods from operations research rely

on global optimizers like linear or quadratic programming,

which can be computationally demanding [3].

In our approach, we borrow the cavity method from the

studies of disordered systems by statistical physics and de-

rive a local and efficient message passing algorithm for

solving instances of the problem [4]. The cavity approach

applied to transportation network is exact on tree graphs

but an approximation in loopy graphs [5, 6]. Interestingly,

we found that a simple decimation strategy can make the

algorithm converge and yield satisfactory results. Based on

this approach, we identify the optimal facility locations and

study the behaviours of the systems in different regimes.

2. The Facility Location Model

Similar to [7], we consider a connected network of N

nodes. A node can be in active or idle state, denoted as

ni = 1, 0 respectively. An active node corresponds to an

outlet that serves the surrounding area. The commodities

are supplied from a single warehouse and need to be trans-

ported to the outlet. We denote the warehouse as a terminal

node T , and the commodity flow from node j to node i as

yi j(= −y ji) which is a continuous variable. The cost func-

tion or energy function to be minimized is

E = U
∑

i

(1 − ni) + V
∑

(i, j)

nin j +
∑

(i, j)

1

2
Ri jy

2
i j. (1)

In the first term, an idle node with the neighbourhood un-

served is penalized by a cost U. In the second term, a

short range repulsion of intensity V is introduced for ad-

jacent active nodes, which tends to spread the outlets and

enhance the coverage. This corresponds to a tendency to

avoid setting up outlets redundantly. The third term is the

transportation cost with weight Ri j analogous to resistance

in resistor networks. Such convex nonlinear transportation

cost tends to distribute flows on different routes to mitigate

congestion in supply networks [8]. To satisfy the demand

of each outlet, the variables are subject to the flow conser-

vation constraints
∑

j∈∂i yi j = ni for i , T where ∂i is the

set of nodes adjacent to node i.

It is interesting to study the behaviours of the systems

which balance the objectives of saving transportation costs

and increasing network coverage.

3. Message Passing Algorithm

In this section, we apply the cavity method to tackle the

problem. For latter convenience, let di = |∂i| be the degree

of node i and define fi j(yi j, ni, n j) = 1/2Ri jy
2
i j
+ Vnin j +

U(1−ni)/di+U(1−n j)/d j, based on which one can rewrite

the cost function in Eq. (1) as

E =
∑

(i, j)

fi j(yi j, ni, n j), (2)

Consider a node j and one of its neighbours node i as the

ancestor. Denote the set of nodes adjacent to node j exclud-

ing node i, or the descendants of node j, as ∂ j\i. We write

the summation over descendants
∑

k∈∂ j\i as
∑′

k. Based on

the tree approximation of the graph, breaking the edge (i, j)

will result in two sub-trees that are locally independent of

each other, which is a good approximation in the absence

of short loops. The cavity energy, i.e., the optimal energy
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Figure 1: An illustrative diagram for Eq. (3). The cavity

energy E j→i(yi j, ni, n j) is obtained by collecting and opti-

mizing the cavity energies of the descendants of node j.

of the sub-tree terminated at node j is,

E j→i(yi j, ni, n j) = min
{y jk |
∑′

k y jk=n j+yi j}

{
∑′

k

Ek→ j(y jk, n j, n
∗
k)
}

+ fi j(yi j, ni, n j), (3)

where the optimal value n∗
k
of nk was found in the update

of node k. An illustrative diagram is shown in Fig. 1. The

cavity energy E j→i(yi j, ni, n j) depends on the cavity ener-

gies of the descendants of node i, which indicates that a re-

cursion process to determine the energy of all the sub-trees

is needed.

As in [5], we approximate the cavity energy up to second

order in yi j and express it in the following quadratic form

[6]

E j→i(yi j, ni, n j) =
1

2
ai j(yi j − ỹi j)

2 + di j. (4)

We refer to ỹi j as the preferred cavity flow of edge (i, j),

which is favoured by the cavity energy E j→i. We term ai j
as the cavity resistance of the sub-tree terminated at node i

whose meaning will be clear in the following expressions.

By solving the cavity energy E j→i in Eq. (3) and express-

ing it in the form of Eq. (4), we can identify the messages

as follows,

ai j = Ri j +
1

∑′
k a
−1
jk

, (5)

ỹi j(n j) =
−n j +

∑′
k ỹ jk

1 + Ri j

∑′
k a
−1
jk

, (6)

di j(ni, n j) =
(−n j +

∑′
k ỹ jk)

2Ri j

2(1 + Ri j

∑′
k a
−1
jk
)
+
∑′

k

d jk(n j, n
∗
k)

+ Vnin j +
U

di
(1 − ni) +

U

d j

(1 − n j). (7)

It is interesting to draw an analogy between the cavity

resistance ai j of the sub-tree and the connections of electric

circuit. One first connects the cavity resistors of the de-

scendants of node j in parallel, yielding the parallel resis-

tance (
∑′

k a
−1
jk
)−1, and further connects it to edge (i, j) with

resistance Ri j in series, which gives the cavity resistance

of the sub-tree as expressed in Eq. (5). Once the network

structure is given, all the cavity resistances are determined

without knowing the state of nodes.

From Eq. (6), the preferred cavity flows of edge (i, j)

is obtained by first collecting the upstream preferred cavity

flows ỹ jk, subtracting the resource absorbed in node i of

amount ni, which is then re-weighted by a factor smaller

than one, i.e., (1+Ri j

∑′
k a
−1
jk
)−1. The re-weighting factor is

due to addition of a new edge of resistance Ri j such that the

new sub-tree favours a smaller cavity flow on edge (i, j).

The iterative updates of yi j and di j depend on the choices

of states of the nodes.

The updates of the state of node n j and the corresponding

messages are determined byminimizing the full energy, de-

fined by joining the cavity energies of the two disconnected

sub-trees and subtracting the double-counted energy fi j,

Efull
i j (yi j, ni, n j) = E j→i(yi j, ni, n j) + Ei→ j(−yi j, ni, n j)

− fi j(yi j, ni, n j). (8)

We then find out the optimal flow y∗
i j
and the optimal

state of node n j at the current step by

y∗i j(ni, n j) = argmin
yi j

Efull
i j (yi, j, ni, n j) =

ai jỹi j − a jiỹ ji

ai j + a ji − Ri j

, (9)

n∗j = argmin
n j

Efull
i j (y∗i, j, ni, n j). (10)

Special considerations are needed for the messages from

terminal nodes and dangling nodes, which we omit here.

The resulting message passing algorithm is summarized in

Algorithm 1.

Initialize the messages and states of nodes;

for t = 1 to tmax do

• Randomly pick a node j and one of its neighbours

node i as the ancestor;

• Collect the messages a jk, ỹ jk and d jk for k ∈ ∂ j\i,

and compute ai j, ỹi j, di j by Eq. (5)-(7);

• Compute y∗
i j
and n∗

j
by Eq. (9)-(10); update the

messages of E j→i as ai j, ỹi j(n
∗
j
), di j(ni, n

∗
j
); update

the state of node j as n∗
j
;

• If the messages converge, exit and output results of

all y∗
i j
and n∗

i
.

end

Algorithm 1: The Message Passing Algorithm

4. Results on Tilted Square Lattices

In this section, we use the above message passing algo-

rithm to identify the optimal facility locations on a tilted

square lattice constructed layer by layer starting from the

terminal node. We assume Ri j = 1 for all edges.
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Figure 2: The active frequencies of nodes in the 7-layer

tilted square lattice during the message passing process

with U = 40,V = 2. The central triangular node is the

terminal node.

(a) (b)

Figure 3: Optimal state with (a)U = 40, V = 2, (b)U = 20,

V = 0.8. Results are obtained by MP guided decimation.

Red nodes are active, and white nodes are idle. The width

of an edge indicates the flow intensity.

4.1. MP Guided Decimation

Due to the presence of numerous short loops, the algo-

rithm fails to converge in some regimes. We found that

the non-convergence instances are usually associated with

degenerate ground states or multiple local minima, from

which conflicting messages are sent along different routes

and confuse certain states of nodes.

For simplicity, we consider a 7-layer lattice with U =

40,V = 2. We show in Fig. 2 the relative frequency of oc-

currence of active state of each node i during the message

passing process. In Fig. 2, most of the nodes have a relative

frequency close to either 1 or 0, i.e., they are certain about

their states, except that there are eight nodes with interme-

diate relative frequencies on the 4th layer. In fact, only one

of the eight nodes will be active in the ground state (see Fig.

3(a)), but the algorithm could not fix a single active node

since the eight nodes are symmetric. Similar behaviours

also appear in other non-convergent regimes.

Based on this observation, we propose to fix the state of

oscillating nodes one by one heuristically according to their

relative frequencies, reminiscent of belief/survey propaga-

tion guided decimation [9]. Our MP guided decimation
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Figure 4: Upper panel : the ground state degeneracy of

a 7-layer lattice as a function of V for U = 40. Lower

panel: the convergence ratio of the MP algorithm without

decimation from 100 trials.

strategy is summarized as follows,

1. Initialize the messages and states of nodes;

2. Run message passing iterations for t times;

3. If theMP iterations in Step 2 converge, exit and output

y∗
i j
, n∗

i
; otherwise, go to Step 4;

4. Find the set of oscillating nodes, pick the most polar-

ized one and fix its state;

5. Repeat Step 2 to 4 until the system converges.

Remarkably, after such decimation process, the MP

algorithm always converges despite the numerous short

loops. With the help of this strategy, we are able to iden-

tify the optimal states and reveal the ground state symme-

try. We then verify in Fig. 4 that the non-convergence of

the original MP algorithm (Algorithm 1) is associated with

degenerate ground states, indicating a direct connection

between the algorithmic behaviours and the energy land-

scape. Local minima other than degenerate ground states

could also hamper algorithm convergence similarly. We re-

mark that our algorithm also works well in random graphs.

4.2. Optimal States

By applying the MP algorithm with decimation, we fur-

ther examine the optimal facility location in square lattices.

In the asymptotic limit of large U but small V , the system

favours an all active state, similar to the ferromagnetic state

in spin system; while in the limit of large U and V with

V/U ≫ 1, the system exhibits alternative active-idle pat-

tern, which corresponds to the anti-ferromagnetic state [7].

In the intermediate regime, the system exhibits interesting

ground state patterns.

In the two instances shown in Fig. 3, an active magne-

tized domain and an outer anti-ferromagnetic band coexist

in the ground states. Physically speaking, the systems set

up facilities extensively near the warehouse but only partly

far away from the warehouse in order to save supply cost

while still maintain comprehensive coverage.
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Figure 5: (a) The fraction of active node fa as a function of

Ũ = U/(N lnN) for Ṽ = 0. (b) The fractions fa−a, fa−i, fi−i
as a function of normalized Manhattan distance d/L from

the terminal node with Ũ = 0.2322, Ṽ = 0.0004644.

A continuous approximation shows that the transporta-

tion cost scales as N2 lnN in leading order in two dimen-

sion, which suggests a universal behavior as a function of

the rescaled parameters Ũ = U/(N lnN), Ṽ = V/(N lnN)

[7]. The presence of lnN in the rescaling factor is ubiq-

uitous in two dimensional systems. In Fig. 5a, we show

the fraction of active node fa versus Ũ for Ṽ = 0. Af-

ter the rescaling, fa for different N tends to collapse into

a universal function. In Fig. 5b, we plot fa−a, fa−i, fi−i,

the fraction of edges connecting two active nodes, one ac-

tive and one idle node, two idle nodes respectively, as a

function of their normalized Manhattan distance from the

terminal node with fixed Ũ = 0.2322, Ṽ = 0.0004644. In

this case, the system admits a mixed phase with the coexis-

tence of an active core, an anti-ferromagnetic band and an

outer idle area which looks like Fig. 3b. The data collapse

in Fig. 5b indicates the optimal states of different system

sizes behave similarly at the same Ũ and Ṽ .

5. Conclusion

We have derived a local message passing algorithm to

identify the optimal locations of facilities in networks. A

heuristic decimation strategy turns out to be effective to fix

the convergence problem and allows us to apply the MP

algorithm in loopy networks. In square lattices, it is ob-

served that an active core and an anti-ferromagnetic domain

can coexist to balance coverage and the transportation cost.

We further verify that two-dimensional systems of different

sizes behave similarly after applying the rescaling factors

of N lnN.
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