
Universal analyses of neuron models based-on a concept of potential with
active areas

Koji Nakajima

Laboratory for Brainware Systems/Nanoelectronics and Spintronics
Research Institute of Electrical Communication

Tohoku University
2-1-1 Katahira Aobaku Sendai 980-8577, Japan

Email: hello@riec.tohoku.ac.jp

Abstract—We present various bursting wave forms
which are obtained from a simple model of the Hodgkin-
Huxley type. The model is a typical example whose char-
acteristics can be discussed through the concept of potential
with active areas. A potential function is able to provide a
global landscape for dynamics of a model, and the dynam-
ics are explained in relation to the disposition of the actives
area on the potential. We obtain the potential functions and
the active areas for the Hindmarsh-Rose model, the Morris-
Lecar system, and the Hodgkin-Huxley system, and hence
we are able to discuss the common properties among these
models based on the concept of potential with active areas.

1. Introduction

While artificial neural networks may appear to make
them ideal candidates for meeting the increasing demand
for intelligent information processing, there are many
residual problems in the formational study for the active
brain architecture. Although, various neuron models have
been introduced, there are not so many studies concern-
ing with networks based on the interconnection of active
neuron units[1] because of complex properties. The anal-
yses of the models may often provide us with novel dy-
namical systems possessing interesting properties in their
component oscillators or in the nature of the interconnec-
tions. Nonlinear systems are usually able to display dif-
ferent dynamic behaviors depending on system parameters
and external input. When these are slightly modified in the
vicinity of a critical point, an abrupt qualitative change or
transition in the dynamics occurs. Hence, these dynamics
have been minutely investigated in each individual model
based on the bifurcation theory[2] where we can discuss
the characteristics around a critical point and the perturba-
tion in its vicinity. These models which typically take the
form of ordinary nonlinear differential equations of several
dimensions commonly display two main types of dynam-
ics firing spikes at regular intervals and bursting of spikes
interwoven with periods of quiescence. The pattern of spik-
ing is of great importance because it is believed that it cod-
ifies the information transmitted by neurons. Numerous
types of spiking and bursting regimes are classified based

on bifurcations of the quiescent state and of a limit cycle
involved[3]. The universality of the dynamic character-
istics of these models, which has been mainly discussed
through a canonical model[3], is of further importance to
apply active neuron units to the networks for intelligent in-
formation processing. Many important aspects of this situ-
ation are poorly understood and lack the satisfying univer-
sality of the structural stability discussion among the vari-
ous models because of nonlinearity. One of the candidates
for comparable characteristics among the models is a po-
tential function which is able to provide a global landscape
for dynamics of the models. The shape of the potential
function and its modification with parameters are able to
indicate the stability conditions. Furthermore, we can also
discuss the stability in relation to the active or passive prop-
erty on the potential, for example, a negative resistance or
viscosity. The concept of potential with active areas is able
to provide the new view of the analyses of the nonlinear
system in addition to the bifurcation theory.

In this paper we establish each potential function for typ-
ical neuron models, and simultaneously the active areas on
the potentials are obtained according to the linear stability
theory Hurwitz’s theorem. Particularly, we propose a sim-
ple model consisting of three first-order nonlinear differ-
ential equations of the Hodgkin-Huxley type[4], and then
explain the various types of bursting phenomena and fir-
ing modes of the model through the analytical and numeri-
cal results which may suggest the similar characteristics of
the other well-known models. Consequently, we are able
to investigate both the correlation among the models and
the characteristics of each individual model in a systematic
manner.

2. Equilibrium Points

Neuron models typically take the form of ordinary non-
linear differential equations of several dimensions. In this
paper we address the models where the set of the ordinary
nonlinear differential equations can be transformed into a
higher order and single nonlinear differential equation with
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one variable x,
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+b1

(
x,
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)
dx
dt

= f (x, θ), (1)

where x = x(t) ∈ R and θ is a constant input. It is as-
sumed that f (x, θ) in Eq. (1) is a continuous and differen-
tiable function of variable x only. The equilibrium points
of Eq. (1) are obtained from f (x, θ) = 0. Therefore, letting
f (x, θ) = −∂Un(x, θ)/∂x, Un(x, θ) is a kind of potential
function. We mainly address the models of three dimen-
sions (n = 3) in Eq. (1) where b1dx/dt, b2d2x/dt2, and
d3x/dt3 are regarded as forces originated from the velocity,
the acceleration, and the change of acceleration, respec-
tively. Hence, it is expected that b1 is a nonlinear coeffi-
cient of viscosity, and b2d2x/dt2 is related to inertia. In
order to discuss the stability of the equilibrium points, let-
ting x = x0 + δ and δ = Aexp(λt) we obtain the following
characteristic equation after the linearization in terms of δ,

λ3 + b2

(
x0,

dx
dt

= 0,
d2x
dt2

= 0

)
λ2

+b1

(
x0,

dx
dt

= 0

)
λ − ∂ f (x0, θ)

∂x
= 0. (2)

According to Hurwitz’s theorem the equilibrium point x0 is
stable, if

b0(x0) = −∂ f (x0, θ)
∂x

=
∂2U3(x0, θ)

∂x2
> 0, (3)

b1(x0, 0) > 0, (4)

b2(x0, 0, 0) > 0, (5)

and

B1(x0) = b2(x0, 0, 0)b1(x0, 0) − b0(x0) > 0. (6)

Therefore, x converges on x0 as the motion on the potential
in the vicinity of the equilibrium point. Eq. (3) means that
the curvature b0 of the potential U3 is positive at x0.

If b1(x, 0) > 0, b2(x, 0, 0) > 0, and B1(x) > 0 for −∞ <
x < ∞, the stability of an equilibrium point x0 depends
only on the potential curvature b0(x0). Accordingly, when
we have m number of equilibrium points x1 < x2 < · · · <
xm−1 < xm, it is expected that x always converges on one
of the stable equilibrium points without divergence if the
curvatures b0(x1) and b0(xm) are both positive. The global
curvature of the potential U3(x) in this case is positive, and
hence f (x, θ) < 0 for xm < x. Therefore, if the velocity
dx/dt and the acceleration d2x/dt2 were both positive for
xm < x, the increment of the acceleration would be negative
(d3x/dt3 < 0) on condition that b1 > 0 and b2 > 0 for xm <
x according to Eq. (1). It leads to the negative acceleration
and the negative velocity in the long run without resulting
in divergence. The similar discussion is available for x <
x1. Therefore, no divergent solutions exist. This conclusion

is supported by the results of simulations in the succeeding
section.

However, the behavior of the system is no more a motion
on the potential in the interval of x where b1(x, 0) ≤ 0 or
b2(x, 0, 0) ≤ 0 or B1(x) ≤ 0 is satisfied. The disposition
of the equilibrium point can be controlled by the external
input θ according to Eq. (1), and hence, when an equilib-
rium point with b0 > 0 is within one of these intervals, the
equilibrium point is unstable because the requirement of
Hurwitz’s theorem for stability is not fulfilled. If there are
no any other equilibrium points which satisfy Eqs. (3)-(6),
a dynamical motion will occur. However, it is considered
from the above discussion that no divergent solutions exist,
if the global curvature of the potential is positive, and if the
intervals with negative b1(x, 0) or b2(x, 0, 0) or B1(x) are lo-
calized. Consequently, it causes an oscillation which may
be a periodic or nonperiodic limit cycle or a chaotic motion.
These intervals are regarded as active areas in analogy with
the BVP model which corresponds to Eq. (1) with n = 2.
If the global curvature of the potential is positive, each one
of these active areas X[b1<0], X[b2<0], and X[B1<0], which are
obtained from Eq. (1) with n = 3 by using b1(x, 0) < 0 or
b2(x, 0, 0) < 0 or B1(x) < 0, causes an oscillation with a
different frequency due to three time constants in the sys-
tem as shown in the next section. It is a bifurcation that
the potential curvature b0 of an equilibrium point changes
its sign, or an equilibrium point crosses an edge of active
areas with changing parameters. The relations between the
three active areas and the oscillation frequencies are shown
in the next section. The relations and the disposition of
the active areas concern directly the states of spiking and
bursting appeared in neuron models.

3. Models

3.1. Hindmarsh-Rose model

The Hindmarsh-Rose equations[5] define a recognized
model for the bursting-spiking dynamics of the membrane
potential x(t). The equations of the model written in di-
mensionless form read

ẋ = y + 3x2 − x3 − z + I, (7)

ẏ = 1 − 5x2 − y, (8)

ż = −r
{

z − 4

(
x +

8
5

)}
. (9)

The equations can be transformed into the one-variable
equation,

...
x +

{
3 (x − 1)2 + r − 2

}
ẍ + 6 (x − 1) ẋ2

+
{
3 (1 + r) x2 + 2 (2 − 3r) x + 5r

}
ẋ

= −r
(
x3 + 2x2 + 4x +

27
5
− I

)
. (10)

Figure 1 shows the potential and active areas of the
Hindmarsh-Rose model for I=0. The stable equilibrium
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x

Figure 1: Potential and active areas of the Hindmarsh-Rose
model. U3, dU3, b1, b2, B1 and B2 denote 500U3HR (x, I =

0) − 15, 105dU3HR (x, I = 0)/dx, b1HR (x), b2HR (x), B1HR (x), and
B2HR (x) = b0HR (x)B1HR (x), respectively.

point is without active areas. It goes into the active ar-
eas with increasing external current I. The Morris-Lecar
system[7] and the Hodgkin-Huxley system[4] are also able
to be transformed into the one-variable equation with ap-
propriate approximations, and hence, we are able to obtain
potentials and active areas for them.

3.2. Burst ID model

3.2.1. Equations

Many burst models have been presented and analyzed,
the Burst ID model is the extended version of Inverse func-
tion Delayed (ID) model[6] which is the slight modification
of the BVP model. Let us make the ID model burst to add
the third variable z as simple as possible[1],

τx ẋ = u + z − g(x), (11)

τzż = z∞(x) − z + θ, (12)

τuu̇ = Wx − u, (13)

where the external input θ is constant and τu >> τz ≥ τx

is assumed. Eqs. (11) and (12) can be transformed into the
equation

ẍ + ηBID (x)ẋ = −∂U2BID (x, u)
∂x

, (14)

where

ηBID (x) =
1
τx

dg(x)
dx

+
1
τz
, (15)

∂U2BID

∂x
=

g(x) − τz
τu

Wx − z∞(x) − τu−τz
τu

u − θ
τxτz

. (16)

ηBID (x) in Eq. (14) is a nonlinear function which has neg-
ative parts depending on g(x). Therefore, Eq. (14) shows
oscillatory outputs even if u is constant. This oscillation
whose basic angular frequency is related to 1/

√
τxτz from

Eq. (14) is fast one because of τu >> τz ≥ τx, and hence
ηBID (x) relates to the fast oscillation. Since u is a slow vari-
able, we might regard it as a parameter in U2BID (x, u). Then
Eq. (14) represents a motion on the potential U2BID (x, u).
u follows x slowly according to Eq. (13), and hence,
U2BID (x, u(t)) changes with time due to the u(t)x term. It
is expected in analogy with the ID (BVP) model that the
change of the potential may cause the second oscillation
which is a slow one because of τu >> τz ≥ τx. The ba-
sic angular frequency of the slow oscillation is related to
1/
√
τxτu. A new negative resistance different from ηBID (x)

is expected for the second oscillation.
Eqs. (13) and (14) can be transformed into the one-

variable equation

...
x +

{
ηBID (x) +

1
τu

}
ẍ +

[
1
τxτz

{
dg(x)

dx
− dz∞(x)

dx

− τz

τu
W

}
+

1
τu
ηBID (x) +

dηBID (x)
dx

ẋ
]

ẋ = −∂U3BID (x)
∂x

, (17)

where

∂U3BID (x)
∂x

=
g(x) − z∞(x) −Wx − θ

τxτzτu
. (18)

The third term of Eq. (17) is related to the new negative
resistance. Eq. (17) corresponds to Eq. (1) with n = 3.

The active areas should localize on the potential to avoid
the divergence of the output x. It means ηBID (x) should have
a positive curvature. For simplicity, we take the lowest de-
gree for ηBID (x), accordingly, the function is

ηBID (x) = 3
{
(x − α)2 − β

}
, (19)

where the central position and the width of the negative part
of ηBID (x) are x = α and 2

√
β, respectively. Therefore, Eqs.

(15) and (19) give

g(x) = τx

{
x3 − 3αx2 +

(
3α2 − 3β − 1

τz

)
x
}
. (20)

In order to discuss the characteristics of the model con-
cerning about the position of active areas on the poten-
tial, it is appropriate to make U3BID (x) independent of g(x).
Therefore, we choose,

z∞(x) = g(x) − x3 + γx − δWx. (21)

3.2.2. Active areas

The active area XBID[b2<0] of the Burst ID model is
α −

√
β − 1

3τu
, α +

√
β − 1

3τu

 , (22)

where β > 1/3τu. The active area causes the fast oscilla-
tion, and is nearly equal to the negative part of ηBID (x).

If τz/τu = δ ∼ 0 and γ > 3δα2/(1 + δ) − 3δβ, we have

XBID[b1<0] =

[
−

√
γ

3
,

√
γ

3

]
(23)
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Figure 2: Time series of the output x(t) for the Burst ID model
with W = −0.35, α = 0.2, β = 0.5(a), β = 0.05(b), and γ = 0.5.
(a) and (b) correspond to FB and SB in Fig. 2, respectively.

which does not depend on α and β. XBID[b1<0] represents the
new negative resistance which causes the slow oscillation.

The third active area XBID[B1<0] is obtained from

B1BID (x) = b2BID (x)b1BID

(
x,

dx
dt

= 0

)
− b0BID (x) < 0. (24)

The slow oscillation will occur, if both of the equilibrium
points are within XBID[b1<0]. If δ ∼ 0, it leads −W < γ <
−3W/2 which agrees with simulations.

The Burst ID model satisfies the necessary condition for
bursting [2], because of the possibility of two oscillations
slow and fast which relate to the active areas XBID[b1<0] and
XBID[b2<0], respectively. However, it does not always show
bursting. The characteristics of the model depend on the
positioning relation between the active areas and the equi-
librium points with the positive potential curvature as well
as the shape of the potential.

Figure 2 shows the time series of the output x(t) for the
Burst ID model with W = −0.35, α = 0.2, β = 0.5, and
γ = 0.5. We can obtain the phase diagram on the α − β
plane where we can see the various types of bursting phe-
nomena and firing modes, for example, the bursting with
and without the spike undershoot. We can also obtain the
number of spikes per burst as a function of α and β [8].
Therefore, the set of theoretical and numerical results for
the phase diagram of the Burst ID model appears valuable
as the basis for research on the coding of information by
neuron systems.

4. Conclusions

In this paper we discussed the universality of the dy-
namic characteristics of several neuron models by using
the concept of a potential function with active areas which
were directly derived from the model equations. We are
able to discuss the stability of the models in relation to

the shape of the potentials and the disposition of the ac-
tive areas. The active areas relate with the stability con-
dition obtained from the Hurwitz’s theorem. The disposi-
tion of the active areas on the potential is of importance to
display various firing modes including bursting. In order
to show the characteristics clearly, we introduced a sim-
ple model (Burst ID model) of the Hodgkin-Huxley type.
The model displays a variety of oscillatory behavior in-
cluding the various types of bursting and spiking which
are obtained through the numerical simulations. The differ-
ent dispositions between more than two active areas are re-
quired in addition to two different frequencies for the gene-
sis of bursting oscillations. They are also required to show
the Class I neural excitability as shown in the simulation
of the model. The result as the number of spikes per burst
depends on the system parameters α and β may be relevant
to the block structured dynamics[9] and hence the neural
code.

If outputs of the other units in a artificial neural network
are applied as the external input for the unit, we may solve
the combinatorial optimization problems according to Hop-
field. If we can set active areas on every local minimum ex-
cluding global minima, the network is able to converge on
the global minimum only. The global minima are ordinar-
ily set at the vertices of the output space, and hence local
minima are expected to be inside of the space. Therefore,
we are able to obtain the result for solving combinatorial
optimization problem to set active areas on the space ex-
cluding vertices[6] by using the presented technique.
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