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Detection of regular patterns within randomness
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Abstract—The identification of slightly jittered regu-
lar signals (=*“patterns”) embedded in strongly noisy back-
ground is a nontrivial important task, particularly in the
neurosciences. Whereas traditional methods generally fail
to capture such signals, staircase-like structures in the log-
log correlation plot are reliable indicators. We provide the
analytic relationship between the length of the pattern n and
the maximal number of steps s(n, m) that are observable at
a chosen embedding dimension m. For integer linearly in-
dependent patterns, the length of the embedded pattern can
be calculated from the number of steps. We, moreover, dis-
cuss several applications of this concept that demonstrate
the power of this concept.

1. Introduction

It has been speculated that spike trains from nervous sys-
tems, in particular the human brain, fall into this class of
mixed regular-noisy signals [1, 2, 3,4, 5,6, 7, 8,9, 10]. As
a main generation principle, they are believed to originate
from neurons that are mostly driven by complex processes,
but occasionally get recruited by more locally defined, sim-
pler circuits of regular firing. Similar signal characteris-
tics may result from neuronal multi-electrode recordings,
where signals from different (randomly, regularly, or in a
mixed mode firing) sources arrive at an electrode. After
spike sorting by which the events of relevance on the time
axis are defined, we may be left with regular signal compo-
nents embedded in a noisy background.

Both parts of such signals could play equally important
roles in cortical signal processing and computation [11].
Here, however, we will be primarily interested in the reg-
ular components and how they can reliably be extracted
from the data. Past approaches dealing with this task con-
tained several critical tuning parameters, expressing ex-
pectations of how the pattern to be searched for should
look like, rendering it difficult to assess the validity of the
obtained results. This may be one of the reasons why
mostly patterns of relatively short length (1-5) have been
identified [4, 7], although it may rightfully be argued that
information-bearing signals in neuroscience cannot be too
long, as actions on relatively short time scales are gen-
erally required. Here, we discuss application and proof
of a method for a fast and unbiased detection of patterns
in noisy contexts that does not share these shortcomings.
The method is based upon the observation that in the pres-
ence of patterns, in the correlation integral plots used for

the evaluation of fractal dimensions [12, 13, 14, 15], step-
like structures emerge. The method works with very mod-
est data size of the kind obtainable in most experimental
contexts in neuroscience, and has, in principle, no pattern
length limitation. In the presence of a noisy signal compo-
nent or jitter, the traditional Fourier method, e.g., quickly
fails, whereas the characteristic decrease of the number of
steps with the embedding dimension is conserved, even
for strong noise components. As the only variance with
the noise-free case, the most prominent step reappears in
a weakened form at multiples of the pattern length, a phe-
nomenon that is simple to understand along the proof of
the main theorem given below. The comparison between
our method and the traditional Fourier approach provided
in Fig. 2 illustrates these facts.

Consider an arbitrary scalar time series of measurements
{x;}, i = 1..L. From this data, embedded points fg") are
constructed as
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where m is called the embedding dimension [16]. This
coordinate-delay construction is standard in nonlinear dy-
namics [13, 14]. Its purpose is to reconstruct the complete
underlying (in general: high-dimensional) dynamics from
partial, usually scalar, measurements. The reconstruction
of the phase space is generically successful if a sufficiently
large data set a sufficiently high embedding dimension is
chosen [13, 14]. Using the embedded points, the correla-
tion integral [12, 13, 14, 15] is calculated as
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where 6(x) is the Heaviside function (8(x) = 0 for x < 0
and 6(x) = 1 for x > 0) and N is the number of embedded
points (N < L — m + 1). The correlation integral CI(\’,")(s)
averages the probability of measuring a distance smaller
than & between two randomly chosen points £ and fﬁm).
In practical applications, log CE(,”) (e) is plotted against log &
(the so-called log-log plot). The correlation dimension d(cm)
0g C"(&

P O 112,13, 14].

loge
If an embedding dimension m > 2d(cm) is chosen, the slope

is defined as the limit " = lim,_o

of log CI(\',")(e) versus log & for small & provides a good es-
timate of the correlation dimension. For the evaluation of
the distances, any norm could be used. Instead of the 'nat-
ural’ Euclidean norm, often the maximum norm is used,
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in order to simplify numerical computations and theoreti-
cal arguments. Degeneracies introduced by this choice are
removed upon the addition of a small amount of jitter.

We first demonstrate how the presence of patterns leads
to a step-like behavior of the log-log correlation dimension
plots. Patterns manifest themselves as a clustering of the
embedded data. For the calculation of CI(\',”) (¢), an embed-

ded point 58") is chosen at random. As the radius & of

its neighborhood U (58"),8) is enlarged, we keep track of
the number of points that fall into this neighborhood. If a
point newly entering the neighborhood belongs to a clus-
ter, upon a small enlargement of &, many points will join.
L.e., the number of points C](\',")(e) quickly increases with e.
Once the cluster size is reached, fewer points are recruited,
and CI(\',") (¢) increases but slowly. In this way, step-like
structures emerge. The denser the clustering regions, the
more prominent the step-like structure. To demonstrate this
effect, artificial (noise-free) time series were constructed
from a repetition of a sequence of length n. The series were
then embedded (embedding dimension m) and the correla-
tion integrals were evaluated. The results shown in Fig. 1
demonstrate a clean emergence of stairs, the number of
which increases with the length of the embedded pattern
n, and decreases with the embedding dimension m. In the
presence of patterns, the step-like behavior emerges stably
even for a few hundred scalar measurements. If in an ex-
periment single trials generate less data than needed (say,
in neuroscience, because of adaptation), data from several
trials under identical conditions can be concatenated. Al-
though in this case the embedded data will contain some
points that violate the continuous dependence on time, this
has normally no statistical influence.

2. Analytical approach

After having shown that the presence of patterns is re-
flected in the emergence of log-log correlation integral
steps, our next goal is an estimate of the pattern length
from the number of steps. That this might be achievable
is motivated by the following argument. Using the maxi-
mum norm, the distance between two points in the embed-
ding space is defined as the maximum of the component
differences. As the dimensionality of the embedding space
is increased, ever more of the possible differences will be
present. A few large differences will, however, prevent the
smaller ones from winning the competition for the maxi-
mum. As a consequence, the number of steps s(n, m) ob-
tained for a pattern of length n can be expected to decrease
with increased embedding dimension m. That this indeed
is the case is demonstrated in Fig. 1b.

The precise way how this decay proceeds depends on
the pattern length n. For toy systems, the maximal number
of occurring steps s(n, m) can be computed numerically as
follows. A time series generated by repeating a sequence
of length n composed of elements {xi,..., x,}, generates
distinct coordinate differences d;; := |x; — x;|. By shifting

a window of length m along the time series, we repeatedly
generate embedded points of embedding dimension m.
On the set of the generated points, the maximum norm
induces classes of equal distances, the number of which
equals s(n,m). Unfortunately, this numerical calculation
quickly exhausts computing time, calling for an analytical
way to compute s(n,m). The values of s(n,m) that can
be corroborated with the help of a desktop computer are
shown in Table I. In Fig. 1 we demonstrate how for the
toy system generated from the sequence {5, 24,37, 44, 59},
the correlation integral method is able to reproduce the
decrease of s(n,m) predicted by Table I: In embedding
dimension m = 1, all ten possible differences are detected.
As m increases towards 5, the number of steps decreases
in accordance with Table I, before remaining constant for
m > 5. The basis of the relationship between number of
steps s, pattern length n and embedding dimensions m is
provided by the following Proposition.

Proposition The number of correlation-dimension
log-log steps s(n, m) generated from an embedded repeated
pattern, equals the number of distinct distances among the
embedded points using the maximum norm.

Proof: For the correlation integral, all n(anl) distances
between points are calculated, where classes of equal
distances {ej, &2,...,&} are generated. Around a point
¢ (()m) in the embedding space, CX,") (&, xr) changes whenever
€ € {e,&,...,&). As this is true for any point, also for
the averaged correlation integral C}\’,")(a, fg")) the number
of steps is s(n, m) = «. This proves the proposition. g

For the analytical derivation of s(n, m) we start from a
time series {x;};=;.n generated by the repetition of a pat-
tern of length n. The pattern is supposed to be general in the
sense that the elements {xy, ..., x,} yield H"Tl distinct coor-
dinate differences d;; = |x; — x| (="integer linear indepen-
dence”)). Embedded points are generated by the shift of a
window of length m along the data series {x;};=1. y. As was
previously pointed out, on the set of the embedded points
the maximum norm induces classes of equal distances, the
number of which equals s(n, m). The goal of the rest of this
paper is to analytically compute s(n, m).

We start by calculating the number of different distance
vectors. Since different distance vectors will not neces-
sarily imply different distances between points, this is but
a preliminary task that can be achieved without specify-
ing the metric. Using this information, we will calculate
the number of different distances, specifying the maximum
norm as the relevant one.

We will focus on the case m < n (case m > n is trivial).
As an example of n = 4,m = 3, we start with the repeated
sequence {xi, X2, X3, X4}, which generates the time series

{x1, X2, X3, X4, X1, X2, X3, X4, X1, X2, X3, X4, X1, X2, ..}

By the embedding process in m = 3, we obtain the set of
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embedded points
{{x1, x2, x3}, {x2, X3, x4}, {x3, x4, X1}, {x4, X1, X213}

The distance vector components d;; between the embed-
ded points then become

{1, x2, x3} = {x2, X3, xa}l = [{x1 — x2, 0 — x3, 03 = xall,  (3)
=:{d12, d23, d34},
{2, x3, x4} = {3, x4, x1}| = [{x2 — X3, 03 — X4, x4 — 21},
=: {da3, d34, d41},
{35 x4, X1} = {xa, X1, 02}l = x5 — x4, x4 — x2, 1 — X2},

=: {d34,d41,d12},

where | . | indicates the componentwise absolute value’ op-
eration. The emerging distance vectors can be collected in
the form of a 2-torus:

diz di3 e din
d23 d24 d2n d21
A1y d-1)1 din-1)(n-2)
D(n) = dnl an dn(n—Z) dn(n—l)
dis di3 e din
da3 doy don dry
dipn-1m  du-11 dp-1y2 din-1Hn-3)  din-1)1n-2)

In this distance matrix D, distance vectors of the m-
dimensional embedding space are represented by sub-
columns of dimension m. Because of the two-torus nature
of D, by starting the vectors at arbitrary positions, we ob-
serve multiple repeats of the vectors (even though we have
requested that d;; # dy, unless ;; =y or j; =;;). By carefully
considering the different origins of such repetitions and by
describing the number of remaining distances in terms of
combinatorics, we arrive at the following result: The max-
imal number of steps s(n, m) emerging in a log-log plot of
a time series from a repeated pattern of length » in embed-
ding space dimension m has the expression

s l<m<?

n even: s(n,m)= w f<m<n 4
g m>n,
n(n—m)+m-—1 . l<m<n

n odd: s(n,m)y=3 ,_; 2 ' )
= . m>n

Using this analytic expression, we obtain the following
table of the maximal number of of observable steps s(n, m):

[min[1][2]3[4][5[6[7[8]9]10]
1 O[1]3]|6]|10]|15|21 |28 |36 |45
2 O|1(2|4] 8 12|18 |24 | 32|40
3 O(1]1]3] 6 9 | 1520 |28 | 35
4 oOj1(1])2] 4 7 12|16 | 24 | 30
5 oO(1]1]2] 2 5 9 | 13 |20 | 25
6 oO(1j1]2] 2 3 6 | 10 | 16 | 21
7 oO(1}(1]2] 2 3 3 7 112 | 17
8 oOj1(1]12] 2 3 3 4 8 | 13
9 oO(1]1]2] 2 3 3 4 4 9
10 oj1(1)121] 2 3 3 4 4 5

TaBLE I: s(n,m) for n,m = 1,...,10. In experimental ap-

plications, one might expect more than one pattern to be
present in a time series. This leads to complications in the
application of s(n,m). If, for the simplest case, one sin-
gle step emerges in the log-log plot, this could either be
due to one pattern composed of length two, or to two “pat-
terns” of length one each. A greater number of steps, as ob-
tained from a multitude of patterns, will further complicate
this problem. Once the presence of patterns is indicated
and precise alternatives for the patterns are posed by the
method, the existence/non-existence of a particular alterna-
tive, can be corroborated by direct methods that under such

conditions are justified. The number of steps predicted by

s(n, m) is reliable up to very strong noise components (this
will be demonstrated in Fig. 2), or up to the point where the
jitter of the pattern conflicts with its nature. Even in very
difficult conditions, the method is able to indicate the pres-
ence of patterns, where s(n, m) can still serve as a guideline
for further processing (see the final discussion).

3. Applications

For applications, the stability of the method with respect
to jitter on the regular pattern is of importance. Jitter on
the repeated patterns modifies the density of the point clus-
ters in the embedding space and, therefore, the distribution
of the distances. In the log-log plot this primarily leads
to a smearing of the steps. A pattern, however, will al-
ways emerge in the embedded time series in its most gen-
uine form (it is neither cut into pieces, nor spoiled by for-
eign points) if the embedding dimension equals the pattern
length (n = m). In the absence of a noise component, the
decrease of steps fully stops at n = m. In the presence of
a noise component, the steps repeat at multiples of n, in a
softened fashion. As a consequence, the most prominent
step provides a reliable indicator of the pattern length.

That this is indeed the case is demonstrated by two char-
acteristic examples. In the first one, to the series generated
from the sequence {5, 24,37, 44, 59} (c.f. Table I), jitter was
added, where the jitter strength is defined as the ratio of
the interval size from which we uniformly sample the jit-
ter, over the shortest pattern interval. The results (Fig. 1b-
f) demonstrate that the pattern length can be reliably esti-
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mated up to a jitter of 512% (Fig. 1e), where the most pro-
nounced step still appears at m = 5. The number of steps
for m < 5, however, are affected by the jitter: For m = 1,
for example, 9 steps are identifiable at 8% jitter (Fig. 1b),
7 steps at 32% (Fig. 1¢) and 3 steps at 128% (Fig. 1d). The
step-like structure disappears if the jitter reaches the size
of the largest element of the pattern (Fig. 1f). Thus, the
criterion that the most pronounced step appears at m = n,
still yields a valuable indicator for the pattern length at very
strong jitter. The method is able to detect the presence of
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Figure 1: Decrease of the number of steps with increas-
ing embedding dimension, with jitter on the regular signal
component (n =5, m = 1,...,8). Form = 1: 10 steps, in
agreement with Table I. Panels b)-f): Jitter levels 8%, 32%,
128%, 512% and 1024%. Overall, for increased jitter, the
number of identifiable steps decreases. The clearest step,
however, always emerges for n = 5, indicating a sequence
of length 5.

patterns with ease in cases where the Fourier / Power spec-
trum method fails, see Fig. 2.
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