
Basic analysis of a leaky spiking oscillator with two periodic inputs

Tohru Nishigami and Hiroyuki Torikai

†Department of Systems Innovation,Graduate School of Engineering Science, Osaka University
‡Email: tohru@hopf.sys.es.osaka-u.ac.jp, torikai@sys.es.osaka-u.ac.jp

Abstract—A leaky spiking oscillator having two
periodic inputs can generate various spike-trains de-
pending on the inputs. In this paper we investigate a
resonance phenomenon of spike distribution, i.e., dis-
tribution of inter-spike intervals approaches to a spe-
cific form as the parameter values of the inputs ap-
proach to a specific point. We analyze basic character-
istics of the resonance phenomenon theoretically and
discuss a possible application of the resonance phe-
nomenon.

1. Introduction

Spiking oscillators of integrate-and-fire types have
been studied as simplified neuron models [1][2][3]. A
spiking oscillator having a periodic input can exhibit
rich bifurcation phenomenon [2][3]. Also a spiking os-
cillator having two kinds of periodic inputs (as shown
in Fig.1, one input S(t) to stimulation and the other
input B(t) to reset label) can exhibit a resonance phe-
nomenon of spike distribution, i.e., distribution of the
inter-spike interval (ISI) approaches to a specific form
as the parameters of the inputs approach to a spe-
cific resonance points. In this paper we investigate
basic effects of the leak (g in Fig.1) to the resonance
phenomenon as follows. First we derive a phase map
(return map for spike phase) and an ISI function from
the spike phase to the ISI. Using the phase map and
the ISI function, we can clarify basic characteristics of
the ISI distribution, e.g., we can clarify a theoretical
upper bound of width of the ISI distribution. We then
clarify basic effects of the leak to the resonance phe-
nomenon, e.g., a resonance curve becomes smoother as
the leak becomes larger. Finally we suggest that the
leak can control accuracy of signal detection function
of the spiking oscillator. Novelties and significances of
this paper include the following points.

• This paper firstly studies effects of the leak to the res-
onance phenomenon. Hence the results of this paper
will be fundamentals investigate the signal detection
function of a real circuit (which must include leak) of
the spiking oscillator. Also analysis of the leak effects
is important to consider temporal coding functions of
spiking oscillators as discussed in [4].

• The dynamics of the spiking oscillator in this paper
is similar to the dynamics of a time encoding machine
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Figure 1: Leaky spiking oscillator

which can encode analog waveform into sequence of
spike positions [5][6]. It is pointed out that the time
encoding will be a promising encoding method in a
future VLSI technology. In these works, however, the
time encoding machine is assumed to have no leak.
Hence the results of this paper will be fundamentals
to develop more realistic time encoding machines.

2. Leaky spiking oscillator with two inputs

Fig.1 shows a leaky spiking oscillator with two pe-
riodic inputs S(t) and B(t). We call S(t) and B(t)
the stimulation input and the base input, respectively.
In this paper, the oscillator has a linear conductance
g and corresponding leak current gv. If the capacitor
voltage v (which corresponds to a membrane poten-
tial) is lower than the threshold VT > 0, the dynamics
is described by

C
dv

dt
= I0 + S(t) − gv(t), S(t) = KS sin(

2π

T
t) (1)

where I0 > 0 and 0 < I0 ≤ KS . If the voltage v reaches
the threshold VT , the monostable multivibrator (MM)
outputs a short pulse Y that closes the switch instan-
taneously, and the voltage v is reset to the following
base voltage

B(t) = KB sin(
2π

T
t + θb) (2)

where KB < VT . We refer to the short pulse Y as
a spike. The moment when the spike Y is generated
is called spike position and is represented by tn. Re-
peating the switching actions, the oscillator outputs a
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Figure 2: Dynamics of the spiking oscillator.

spike train

Y (t) =
∑

n

P (t − tn), P (t) =

{
0 for t �= 0
E for t = 0.

(3)
Using the following dimensionless variables and pa-
rameters

τ = t/T, x = v/VT, s0 = I0T/CVT,

ks = KST/CVT, kb = KB/VT, α = gT/C,

we obtain the following dimensionless circuit equation:{
ẋ(τ) = s0 + ks sin(2πτ) − αx(τ) for x(τ) < 1
x(τ+) = kb sin(2πτ + θb) if x(τ) = 1,

(4)
where 0 < s0 ≤ ks, kb < 1 and τ+ denotes right after
τ . Letting τn = tn/T denote the dimensionless spike
position, the output spike train is described by

y(τ) =
∑

n

p(τ − τn), p(τ) =

{
0 for τ �= 0
1 for τ = 0.

(5)
In the dimensionless equations, the threshold is 1 and
the conductance is α. Fig.2 shows basic dynamics of
the spiking oscillator. The state x(τ) is reset to b(τ) at
each τn. Let us define the following function X(τn, τ):

X(τn, τ) = x(τ) for τ ≥ τn, X(τn, τn) = b(τn).

Then, for a given spike position τn, the next spike
position can be described by

τn+1 = min(τ) such that X(τn, τ) = 1. (6)

Since the next spike position τn+1 is uniquely defined,
the following spike position map can be defined:

τn+1 = f(τn), f : R+ → R+ (7)
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Figure 3: Left: phase maps. Right: ISI distribution.
(b) is at the resonance point.

where R+ = {τ |τ ≥ 0, t ∈ R}. Since f(τn + 1) =
f(τn) + 1, the system dynamics can be analyzed by
the following phase map:

θn+1 = F (θn) = f(θn) (mod1), F : (0, 1) → (0, 1)
(8)

where θn = τn(mod1).

3. What is the resonance phenomenon?

Let Δn = tn+1 − tn be the inter-spike interval (ISI).
Fig.3(a) shows an example of the phase map F and
corresponding distribution of the ISI Δn. In order
to characterize the ISI distribution, let us define the
following width σ of the ISI distribution:
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σ = max
n

(Δn) − min
n

(Δn). (9)

Fig.3 shown a typical example of change of the width
σ with respect to change of an input parameter value.
The change of σ can be explained as follows.

• In Fig.3(a), the ISI distribution width is σ > 0 and
the ISI distributes continuously in the width. In this
case the output spike-train Y (t) is non-periodic.

• In Fig.3(b), the ISI distribution width is σ = 0 and
the ISI distribution is a delta function. In this case the
output spike-train Y (t) is periodic, and Y (t) consists
of the same ISI.

• In Fig.3(c), the ISI distribution width is σ > 0 and
the ISI distributes continuously in the width. In this
case the output spike-train Y (t) is non-periodic.

• As explained in the above three cases, the ISI distri-
bution approaches to the specific form (i.e., the delta
function in Fig.3(b)) as an input parameter approach
to the resonance point (e.g., kb = 0.037 in the above
example). Such a phenomenon is called the resonance
phenomenon of ISI distribution [3].

In order to analyze the resonance phenomenon, let
us derive the upper bound σmax of the ISI distribution
width σ. The ISI Δn is given by

Δn = f(τn) − τn = g(τn). (10)

We refer to the function g as ISI function. Using the
ISI function g, we can derive the possible maximum
and minimum values of the ISI Δn as follows:

max
n

(Δn) ≤ max
τ

(g(τ)), min
n

(Δn) ≥ min
τ

(g(τ)).

(11)
Then we can derive the upper bound σmax of the ISI
distribution width σ as follows:

σ ≤ σmax = max
τ

(g(τ)) − min
τ

(g(τ)). (12)

We refer to the upper bound σmax as maximum width.
The change of the ISI distribution width σ in Fig.3 can
be illustrated by means of the maximum width σmax

as shown in Fig.4. The maximum width σmax labeled
by (a), (b) and (c) correspond to the ISI distribution
in Fig.3(a), (b) and (c), respectively. Now we can see
that the graph of σmax labeled by (a), (b) and (c) in
Fig.4 can be regarded as a resonance curve of the ISI
distribution, where the point (b) corresponds to the
resonance point.

4. Leak and resonance phenomenon

Fig.3(b), Fig.5(α) and Fig.5(β) show effects of the
leak α to the ISI distribution σ. The labels (α) and
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Figure 4: Maximum width σmax of the ISI distribution.

(β) in Fig.4 correspond to the phenomenon in Fig.5(α)
and Fig.5(β), respectively. In these figures we can see
the following points:

• When α = 0 (i.e., no leak), the phase map F is piece-
wise linear as shown in Fig.3(b). The ISI distribution
is the delta function as shown in Fig.3(b) as indicated
by the label (b) in Fig.4.

• As α becomes larger (i.e., as leak becomes larger),
the phase map has more nonlinearity as shown in
Fig.5. The ISI distribution width σ becomes larger
and the average of the ISI becomes longer as shown
in Fig.5 and as indicated by the labels (α) and (β) in
Fig.4.

Discussions on signal detection function:
Let us discuss application potential of the reso-
nance phenomenon to input signal detection. Let
ks sin(2πτ) = s(τ) in Equation (4) (corresponding to
S(t) in Fig.1) be an input signal applied to the os-
cillator. Let kb sin(2πτ + θb) = b(τ) in Equation (4)
(corresponding to B(t) in Fig.1) be an internal sig-
nal of the oscillator. Fig.4 suggests that the oscillator
can detect the resonance point kres

.= 0.037 by ad-
justing the amplitude kb of the internal signal b(τ)
so that σ = 0 can be observed. Ref [3] shows that
the resonance point kres

.= 0.037 is given by a func-
tion of the amplitude ks of the input signal s(τ) for
the case of α = 0. That is, the oscillator can detect
the input amplitude ks by adjusting the internal sig-
nal b(τ) for the case of α = 0. These results will be
fundamentals to investigate a signal detection func-
tion (or, spike-based encoding function) of the spiking
oscillator. Effects of the leak α to the signal detec-
tion function can be explained by Fig.4 as follows. As
the leak α becomes larger, the resonance curve changes
from the inverse-triangle function (labeled by (b)) into
the concave function (labeled by (α)). As long as the
resonance curve is concave, the oscillator has the sig-
nal detection function although detection error may
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Figure 5: Left is ISI histograms and right is phase
maps where (b), (α), (β)

increase. As the leak α becomes further large, the
resonance curve changes into the monotone function
(labeled by (β)). In this case the oscillator does not
exhibit the resonance phenomenon and does not have
the signal detection function. Further experiment is
done for frequency response of σmax and its result is
shown in Fig.6. In this experiment, σmax is derived
from equation (1), (2) and (3), where the frequency
1/T is treated as the control parameter. From this ex-
periment, the resonance phenomenon depends on the
frequency. That is, the oscillator can detect frequency
1/T by adjusting B(t). The results of this paper will
be fundamentals to give criteria for the accuracy of the
signal detection function which utilizes the resonance
phenomenon.

5. Conclusions

We have studied the leaky spiking oscillator. If the
oscillator has no leak, the ISI distribution approaches
to the delta function as the parameter approaches to
the resonance point. We have derived a resonance
curve of the ISI distribution by using the mapping
procedure. We have also shown that, as the oscilla-
tor has larger leak, the resonance curve approaches to
be monotone. We have also discussed possible applica-
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Figure 6: Frequency response of σmax.

tion of the resonance phenomenon to the signal detec-
tion function. Future problems include the following
points: (a) consideration of relations between results
of this paper to the time encoding machine [5][6]; and
(b) implementation of the leaky spiking oscillator and
analysis of its dynamics.

The authors would like to thank Professor Toshim-
itsu Ushio of Osaka University for valuable discussions.
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