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Abstract—Chimera states are exotic solutions arising
in complex dynamics, typically in networks of coupled
oscillators. They are characterized by a cluster arrange-
ment within the network, each cluster being identified by
a particular behavior of all of its individual oscillators.
Chimeras appear thus as the occurrence of stable neighbor-
ing groups (the clusters) of oscillators, each oscillator mo-
tion being uniform within one cluster, but incongruent be-
tween clusters. We report the experimental, numerical, and
theoretical observation of such virtual Chimera states in a
particular class of complex dynamical system modeled by
a nonlinear delay integro-differential equation. The corre-
sponding experimental setup involves an optoelectronic de-
lay oscillator in which the dynamical variable is the wave-
length of a tunable laser diode.

1. Introduction

Chimera states in complex networks of coupled oscil-
lators were first found numerically in 2002 [1], and then
attracted great interest in the scientific community [2, 3].
Chimeras are typically observed in newtork of oscillators
with so-called non-local coupling, meaning that not only
nearest neighbors are interacting, but also more distant
ones. Usually there are two bifurcation parameters used
to detect the regions of Chimera existence in the network
parameter space, the coupling strength and the coupling ra-
dius [3] (how far beyond the nearest neigbor should be the
coupling distance between oscillators). The interest in this
research area was again amplified in 2012 when the first ex-
perimental observations of Chimera states were succeeded
in optics (transverse patterns in a light beam [4]), in chem-
istry (in a reactor with light catalysis [5]), and in mechanics
(networks of metronomes distributed on mechanically cou-
pled plateforms [6]). More recently the same phenomenon
was identified for the first time in dynamics without spatial
variable (thus calling them “virtual” Chimeras), i.e. in non-
linear delay dynamics [7], motivated by a space-time anal-
ogy for this delay dynamics proposed a long time ago [8].

In this latter context we were motivated to extend the
electronic delay frequency modulation (FM) dynamics, to a
conceptually similar photonic setup. We also provide here
a discussion on the stability domain depending on time pa-

rameters of delay dynamics.

2. Experiment and modeling

Among the various fields in Physics and Biology involv-
ing dynamics modeled by differential equation with delay,
Optics has proposed since the early 80s paradigmatic se-
tups, among which the first experimental chaotic behavior
have been found [10, 11]. Motivated by novel physical ap-
plication concepts (optical chaos cryptography [12]), a spe-
cific optoelectronic nonlinear delayed oscillator has been
proposed for the photonic generation of complex chaotic
dynamics, which oscillator was involving laser wavelength
fluctuations of a tunable semiconductor laser diode. Be-
low in our experiment we will describe the concepts of this
wavelength oscillator, adapting its properties to obtain the
recently discovered “virtual” Chimeras as described in [7].

2.1. The nonlinear delayed in wavelength oscillator

Figure 1: The nonlinear delay oscillator in laser wavelength

The block diagram of the experimental setup is repre-
sented in Fig. 1. It corresponds to an oscillator loop com-
prising of the following elements:

• A double-electrode laser diode with tunable wave-
length, allowing to have a monochromatic light beam
of powerP0, having the wavelengthλ = λ0 + δλ pro-
portional to the DBR section injection currentiDBR,
continuously over a range∆λ ≃ 1 nm (with λc ≃

1550 nm):

λ = λ0 + δλ = λc + S DL · iDBR (1)
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• A Fabry-Pérot interferometer (FPI indexn = 1.5,
thicknesse = 5 mm) of very moderate finesse (mirror
with coefficient of reflectionR ≃ 50 %), the role of
which is to provide the nonlinearity through its trans-
fer function between the output powerP(t) and the
wavelength inputλ(t) = λc + δλ(t). The free spectral
range (FSR= c/(2n e)) is selected to be smaller than
the continuous tuning range of the laser (FSR< ∆λ)

fNL(x) =
A

1+ m · sin2(x + Φ0)
=

P
P0

(2)

wherex =
−2πne

λ2
0

δλ andΦ0 =
2πne
λ0
.

In order to observe virtual Chimera, an essential fea-
ture of this nonlinear transformation consists in the
asymmetry between the minima and maxima of the
Airy function of the FPI. Indeed, with a transfer func-
tion derived from a 2-wave interferometer as in the
original wavelength chaos photonic setup [12], the ob-
tained sin2− nonlinear function is perfectly symmet-
ric, and does not allow to have “incongruent” clus-
ters. It is also important to note that the parameter
Φ0 simply adjusted by a current offset iDBR0 such as
λ0 = λc + S DL · iDBR0, allows to choose the operating
point of the nonlinearity, around which the dynamics
develops.
The parametersA and m are conventionally defined
for a Fabry-Pérot interferometer,A = (1 − R)−1 ≃ 2
andm = 4R/(1− R)2 ≃ 8 for R ≃ 50 %.

• A photodiode allows to convert, in a linear manner,
the fluctuations of light intensity into the fluctuations
of electric amplitude (i.e. a photo-current),

iph = S λ · P. (3)

• An electronic delay line, realized by FIFO memory
(first in-first out, with a memory depth ofN) is al-
lowing to fine tune the value of the time delay via the
clock frequencyfCLK , imposing the rythm at which
the electronic signal is travelling through the memory:

iD(t) = iph(t − τD) where τD = N/ fCLK . (4)

• An electronic filter intended for the Fourier filtering
performed by the electronic part of the oscillator. In
the Fourier domain, this filter is described by a band-
pass of filter with a gainH0, a high cutoff frequency
fh = (2πτ)−1 and a low cutoff frequencyfb = (2πθ)−1:

H(ω) =
(iωθ) H0

(1+ iωθ)(1+ iωτ)
=

IF(ω)
ID(ω)

. (5)

The conversion rules between the Fourier and the time
domains for this linear filter allow us to derive the

following differential equation ruling the filter output
iF(t) dynamics, given its inputiD(t):

1
θ
·

∫ t

t0

iF(ξ) dξ+
(

1+
τ

θ

)

· iF(t)+ τ ·
diF
dt

(t) = iD(t) (6)

• Finally, an adder is used to define the average control
current applied to the DBR electrode, which allows
to determine the laser wavelength and thus the aver-
age operating point along the FPI modulation transfer
function.

iDBR(t) = iDBR0 + iF(t). (7)

2.2. Normalized dynamical model

The dynamics of the wavelength nonlinear delay oscilla-
tor can be now reduced from the description of each of the
components of the oscillation loop by the physical equa-
tions (1-7). For the purposes of numerical simulation or an-
alytical development, it is often appropriate to provide the
evolution equation of our oscillator with normalized vari-
ables. Natural normalization of the dynamical variable is
given by the dimensionlessx argument involved in the Airy
function (2). In terms of time, the delay is often considered
as a time unit. This brings us to the following normalized
model:

δ ·

∫ s

s0

x(ξ) dξ + (1+ ε δ) · x(s) + ε ·
dx
ds

(s) (8)

=
β

1+ m · sin2[x(s − 1)+ Φ0]

wheres = t/τD is the normalized time,δ = τD/θ = 2π fbτD

and ε = τ/τD = (2π fhτD)−1 are two (generally small)
normalized parameters representing integral and differen-
tial weights in the dynamical process,x = (−2πne/λ2

0) ·
δλ = (−2πneS DL/λ

2
0) · iF is a normalized dynamical vari-

able, actually proportional to the wavelength deviation,
or also to the output signal of electronic filtering,β =
(−2πneS DLH0AS λ/λ2

0) is a normalized weight of the non-
linear delayed feedback, and finallyΦ0 = (2πne/λc)(1 −
S DL · iDBR0/λc) is a parameter allowing to choose, changing
iDBR0, the operating point of the dynamics along the non-
linearity (according to (1) and (7)λ0 = λc + S DL · iDBR0).
Unlike most delay equations (e.g. Ikeda or Mackey-Glass
models), here we find an integral term early introduced in
[13]. This term is a source of many unusual solutions in
delay dynamics, such aschaotic breathers [14], harmonic
solutions with high spectral purity [15], or stable square
wave solutions with a single delay period [16]. A more
conventional way to write the previous nonlinear integro-
differential delay equation is to introduce an additional
variabley =

∫

x. The following system of two first order
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differential equations is obtained:

ε
dx
ds

(s) = −(1+ δε) · x(s) − δ · y(s) (9)

+
β

1+ m sin2[x(s − 1)+ Φ0]
,

dy
ds

(s) = x(s).

δ andε are generally small quantities under conditions cor-
responding to “large” delays, i.e. fast characteristic time τ
is much smaller than the delayτD, and even longer integra-
tion timeθ compared to the delay). This results in a product
εδ which is generally negligible (second order term) com-
pared to 1, so that (1+ εδ) can be replaced by unity.

3. “Virtual” Chimeras

3.1. Spatio-temporal analogy

As already pointed out, the Chimera states are usually
studied in networks of coupled oscillators. The delay dy-
namics, which we have just described, hasa priori very
different nature since it is a purely temporal system. Arec-
chi and coauthors [8] have however proposed first in 1992 a
spatio-temporal analogy of delay dynamics which can help
getting closer conceptually to the spatio-temporal dynam-
ics of oscillator networks. The principle is to separate virtu-
ally the scales of multiple times actually involved in delay
dynamics in order to assign the short time (of orderτ, or ε)
to a continuous “virtual space” variableσ, and also a long
time (of order of delayτD, or a unit) to a discrete temporal
variablen (n × τD in physical units).

The trajectory ofx(s), solution of (9), can then be rep-
resented as a 2D graphx(σ, n) whereσ ∈ [0, 1+ γ] (with
a smallγ of order ofε) along horizontal dimension rep-
resents a virtual space variable describing changes in am-
plitude within a time interval corresponding to delay; The
vertical axis of the 2D plot refers then ton ∈ N is a dis-
crete time corresponding to an iteration of a time inter-
val of (nearly, actually (1+ γ)τD) one delay interval to
the next one. The normalized times is thus decomposed
according to these two spatial and temporal coordinates,
s = σ + n(1+ γ).

Yet another way to describe our delay oscillator dynam-
ics is via an integral formulation instead of differential one
(8 or 9):

x(s) =
∫ ∞

0
h(ξ) · fNL [x(s − 1− ξ)] dξ, (10)

whereh(s) is the impulse response of considered bandpass
filter. With respect Chimeras in spatially extended dynam-
ics of an oscillator network, a closer analogy can then be
proposed compared: every “oscillator” of the network has
an amplitudex(s), which evolves dynamically in time cor-
responding to the discret time mapping of the intra-delay

waveform, according to a nonlinear coupling through the
function fNL which is applied to the previous amplitude
x(s − 1). However, from (10) it implies that this dynam-
ics also depends on the amplitudes of neighbors on the dis-
tance of “ξ”. According to this interpretation,h(ξ) appears
as a coupling coefficient of the “distance” functionξ to the
considered oscillator. The non-local character of the cou-
pling is revealed here as related to the spreading of the im-
pulse responseh(s).

3.2. Results

The figure 2 illustrates the formation of Chimera state in
a nonlinear delay dynamics both in experiment (figure 2(a))
and numerical simulation of the equation (9). Depending
on parametersε, δ, β as well as on initial conditions, one
can obtain chimeras with one (top line) or multiple “heads”
(bottom line, 2 heads). The time traces to the left of spatio-
temporal representations (patterns in the (σ, n) plane) allow
to assess the transitional phase of chimera state birth from
initial conditions to the asymptotic chimeras states. In this
latter case a virtual chimera has a head in the delay dy-
namics characterized by partitioning a time interval of a
length very close to delay (1+ γ). There are two subin-
tervals, one showing chaotic fluctuations (red and yellow
colors) and other one stands for a plateau of constant am-
plitude (blue color). During the formation of two or more

Figure 2: Appearance of Chimera in a delay dynamics with
corresponding time traces and spatio-temporal representa-
tions. (a): Experiment, (b): Numerics. Amplitude values
and gain parameters of the equation (9) areε = 5x10−3,
δ = 8.4x10−3, β = 1.0, andΦ0 = −0.35.

chimeras heads, with the same parameter values for the dy-
namics, the “space” occupation ratio of chaotic amplitudes
and the plateaus remains the same. Due to multistability of
the system, initial conditions affect the number of “heads”
observed.

Chimera formation occurs only within a specific area of
the parameter space. When the gainβ is insufficient, the dy-
namics reduces to a fixed point or a limit cycle of period 1
[16], or to slow motion periodic regimes dominated by the
integral time scale (chaotic breathers). For higher gains a
progressive transition to turbulence is observed, leadingto
fully developed chaotic regimes.
The temporal parametersδ and ε are equally important
in the emergence of Chimera states. The standard scalar
model of delay dynamics (δ = 0) does not allow to observe
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stable Chimeras [17]. The border of stable Chimera exis-
tence in the (ε, δ) plane is found to correpsond to the curve
δ = exp[(1− ε−1)/2].

4. Conclusion

Delay dynamics is evolving in an infinite phase space
and exhibitsa priori a high potential for dynamic complex-
ity, similar to spatio-temporal systems. From the experi-
mental viewpoint the delay dynamics is much more simple
to design and analyze through its purely temporal behav-
ior. Basic signal processing techniques as well as flexi-
ble experiment tools in photonics offer high flexibility for
the choice of various operating parameters and non-linear
transformations. In this context we were able to demon-
strate the existence of “Chimera” behavior in an optoelec-
tronic oscillator with delayed feedback, which model is de-
scribed by a nonlinear integro-differential delay equation.

This variety of behaviors confirms the well-known anal-
ogy to the networks of coupled oscillators in which
“Chimera” states were initially identified.
It is interesting to mention that such an analogy was also
exploited recently in an original application, a hardware
implementation of a novel computational paradigm in-
spired by neural networks, which is a precisely a network
of coupled oscillators [18, 19, 20].
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