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Abstract—In the previous study, we have proposed the
Lazy Self-Organizing Map (LSOM), whose learning rate
depends on only each neuron’s character, and investigated
its behaviors. In this study, we propose an improved
LSOM, whose learning rate depends on each neuron’s char-
acter, lazy-neuron rate and time. We apply the improved
LSOM considering lazy-neuron rate to various input data
set and investigate its effectiveness using three measure-
ments.

1. Introduction

In data mining, clustering is one of typical analysis tech-
niques and is studied for many applications, such as a state-
ment, a pattern recognition, a image analysis and so on.
Then, the Self-Organizing Map (SOM) [1] has attracted at-
tention for the study on clustering [2] in recent years. SOM
is an unsupervised neural network introduced by Kohonen
in 1982 and is a simplified model of the self-organization
process of the brain. SOM can retain topological feature,
which is association between neurons, and according to its
advantage, SOM can classify similar data. Meanwhile, in
the world, the amount and the complexity of data increase
from year to year. Therefore, it is important to classify var-
ious data exactly.

In the previous study, we have applied ant world to the
conventional SOM. There is a report that about 20% of
worker ants are “lazy” [3], furthermore, there also is an-
other report that the ants group, which contains the lazy
ants at food collections, can collect more foods than the
group which contains only the worker ants. From these
reports, we have proposed a new type of SOM algorithm,
which is called Lazy SOM (LSOM) algorithm [4]. The im-
portant feature of LSOM is that three kinds of neurons ex-
ist; worker neurons, lazy neurons, which do not work, and
indecisive neurons which are the neighborhoods of the lazy
neurons. The learning rate of the lazy neurons is smaller
than that of the worker neurons. The learning rate of the
indecisive neurons becomes small due to the lazy neurons.
The learning rate of the previous LSOM depends on each
neuron’s character. For this reason, the previous LSOM can
obtain the map reflecting the distribution state of the input
data more effectively than the conventional SOM, however,
it tend to obtain a strongly twist map.

In this study, we propose an improved LSOM resembling
the learning rate of the conventional SOM in order to carry
out more exact self-organization than the previous LSOM.
We investigate efficacy of the lazy-neuron rate of the im-
proved LSOM and apply it to various input data set. We
confirm that the improved LSOM containing the lazy neu-
rons, which is from 10% to 20% of the total, can obtain
the most effective and exact map reflecting the distribution
state of the input data than the conventional SOM.
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Figure 1: LSOM contains three kinds of neurons: worker
neuron, lazy neuron and indecisive neuron. Each number
denotes neighborhood distance between lazy neuron and
each neuron.

2. Lazy Self-Organizing Map (LSOM)

In our previous research, we have proposed LSOM con-
taining three kinds of neurons (as Fig. 1): worker neurons,
lazy neurons, which do not work, and indecisive neurons
which are neighborhoods of the lazy neuron. However, the
previous LSOM has a defect. The learning rate of the pre-
vious LSOM depends on each neuron’s character. For this
reason, the previous LSOM can obtain the map reflecting
the distribution state of the input data more effectively than
the conventional SOM, however, it tend to obtain a strongly
twist map. In this study, we propose that the improved
LSOM which can retain association between neurons with
the feature of the previous LSOM remaining. In conse-
quently, the learning rate of the improved LSOM is decided
by each neuron’s character, a lazy-neuron rate, which is the
percentage of lazy neurons of the total, and time. It means
that the improved LSOM keeps features of the conventional
SOM than the previous LSOM.

We explain the learning algorithm of the improved
LSOM in detail. LSOM has a two-layer structure of the
input layer and the competitive layer as the conventional
SOM. In the input layer, there are d-dimensional input
vectors x j = (x j1, x j2, · · · , x jd) ( j = 1, 2, · · · ,N). In the
competitive layer, M neurons are arranged as a regular
2-dimensional grid. Each neuron has a weight vectors
wi = (wi1,wi2, · · · ,wid) (i = 1, 2, · · · ,M) with the same di-
mension as the input vector. (p × M) neurons are classified
into a set of the lazy neurons S lazy at random. i.e., p de-
notes lazy-neuron rate.

(LSOM1) An input data x j is inputted to all the neurons at
the same time in parallel.
(LSOM2) We find a winner neuron by calculating the dis-
tances between the input vector x j and the weight vector wi
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of the neuron i. The winner neuron c is the neuron with the
weight vector nearest to the input vector x j;

c = arg min
i
{‖wi − x j‖}, (1)

where ‖ · ‖ is the distance measure, in this study, we use
Euclidean distance. If c ∈ S lazy, we perform (LSOM3). If
not, we perform (LSOM4).
(LSOM3) The lazy neuron, which is the winner c, is ex-
cluded from the set of the lazy neuron S lazy, and a neuron f
is selected to become a member of S lazy. f is farthest from
the input data x j and is not in S lazy;

f = arg max
i
{‖wi − x j‖}, i < S lazy. (2)

In other words, the lazy neuron becomes worker if it be-
comes the winner c, and another neuron f becomes lazy.
(LSOM4) We find the indecisive neurons. A set of the in-
decisive neurons Nlazy are the neighborhoods of each lazy
neuron l in S lazy.

Nlazy = {i | ‖ri − rl‖2 ≤ D(t),
i , c, i < S lazy, l ∈ S lazy},

(3)

where ||ri − rl|| is the neighborhood distance between map
nodes i and l on the map grid, and D(t) corresponds to the
neighborhood size. D(t) increases with time according to
the following equation;

D(t) =
[
Dmax

t
T

]
, (4)

where [ · ] denotes the Gauss’ notation and Dmax is a fixed
parameter deciding the max value of D(t), t is the learning
step, T is the maximum number of the learning.
(LSOM5) The weight vectors of all the neurons are up-
dated as

wi(t + 1) = wi(t) + hLc,i(t)(x j − wi(t)), (5)

where hLc,i(t) is the neighborhood function of LSOM as

hLc,i(t) = α(t) exp

(
−‖ri − rc‖2

2σ2(t)

)
, (6)

where α(t) is the learning rate of the improved LSOM and
is decided by each neuron’s character, the lazy-neuron rate
p and time;

α(t) =


αlazy

(
1 − p t

T

)
, if i = l, l ∈ S lazy

αN

(
1 − (1 − p) t

T

)
, if i ∈ Nlazy

αw

(
1 − (1 − p) t

T

)
, otherwise,

(7)

where αw is the learning rate of the worker neurons, αlazy is
the learning rate of the lazy neurons and αN is the learning
rate of the indecisive neurons, namely αlazy ≤ αN ≤ αw.
(LSOM6) The steps from (LSOM1) to (LSOM5) are re-
peated for all the input data.

3. Experimental Results

3.1. For Target data

We consider a 2-dimensional input data: Target data set
shown in Fig. 2(a). This data contains 770 points which has

a clustering problem of outliers [5]. The conventional SOM
and the previous LSOM and the improved LSOM have 100
neurons (10 × 10), respectively. 10% neurons of the total,
namely p = 0.1, are classified into a set of the lazy neurons.
We repeat the learning 20 times for all input data, namely
T = 15400. The parameters for the learning are chosen as
follows;

αw = 0.5, αlazy = 0.05, αN = 0.25

α(0) = 0.5, σ(0) = 4.0, Dmax = 5.

where we use αw(t) corresponding to learning rate of the
conventional SOM and σ(0) corresponding to width of
neighborhood function of the conventional SOM for the
comparison and the confirmation of the lazy neurons effect.

The simulation results of the conventional SOM, the
previous LSOM and the improved LSOM are shown in
Figs. 2(b), (c) and (d), respectively. In Fig. 2(b), we can
see that the conventional SOM does not self-organize up to
all the outliers of the input data. In Fig. 2(c), even though
the previous LSOM can self-organize up to all the corner
data, it has some twists. The twists are the phenomenon
that the association between the neurons do not retain, and
they produce a false recognition that the distance between
the neurons is near though it is far actually. Besides, the
twists become a cause that we can not extract the exact data
reflecting the topology of the input data in the extraction.
In Fig. 2(d), the improved LSOM can self-organize up to
all the corner data than the conventional SOM and does
not have the twists. This results are because the follow-
ing reasons. The worker neurons tend to gather at the area
where the input data are concentrated in easily, the indeci-
sive neurons and the lazy neurons can discover the outside
area easily. Furthermore, the lazy neurons are hardly up-
dated at all and have the feature of (LSOM3) in Section 2.
For these features, the improved LSOM can self-organize
outliers more effectively than the conventional SOM. Ad-
ditionally, a reason why the improved LSOM does not have
the twists is that the learning rate of the improved LSOM
resembles the conventional SOM than the previous LSOM
whose learning rate does not contain time. For these rea-
sons, we can confirm the improved LSOM effectiveness.

Furthermore, in order to compare the learning perfor-
mance of LSOM with other methods numerically, we use
the following well-used three measurements.
Quantization Error Qe [1]: This measures the average
distance between each input vector and its winner. Thus,
Qe near 0 is more desirable.
Topographic Error Te [6]: This describes how well the
SOM preserves the topology of the the learned data set.
Thus, Te near 0 is more desirable.
Neuron Utilization U [7]: This measures is the percentage
of neurons that are the winner of one or more input vector
in the map. Thus, U near 1 is more desirable.

The calculated measures are shown in Table 1. The
quantization error Qe of the previous LSOM is the small-
est value in three algorithms and the neuron utilization U
of the previous LSOM is the largest value. However, the
topographic error Te of the previous LSOM is the largest
value, and by using the previous LSOM, Te becomes worse
128.4672% from using the conventional SOM. Unlike the
quantization error Qe, Te considers the structure of the
map. For a strangely twisted map, the topographic error
is big even if the quantization error is small. Namely, no
matter what Qe and U have improved from using the con-
ventional SOM, if Te becomes worse, its results are not
effective. Meanwhile, although the neuron utilization U
of the improved LSOM is the same as the conventional
SOM, the quantization error Qe of the improved LSOM
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Figure 2: Simulation results for Target data. (a) Input Data. (b) Conventional SOM. (c) Previous LSOM. (d) LSOM.

is smaller, and by using the improved LSOM, Qe has im-
proved by 13.6970% than the conventional SOM. Further-
more, the topographic error Te of the improved LSOM is
smaller than the conventional SOM, and by using the im-
proved LSOM, Te has improved by 54.7445%. For these
results, we can see that the improved LSOM is effective
than the previous LSOM and obtains the best results.

Table 1: Quantization error Qe, Topographic error Te and
Neuron utilization U for Target data.

Qe Te U
Conventional SOM 0.0190 0.1779 0.8100
Previous LSOM 0.0144 0.4065 0.8300
LSOM 0.0164 0.0805 0.8100
Improvement rate of
LSOM from SOM 13.6970% 54.7445% 0%

Figure 3 shows distances between neighboring neurons
and visualizes the cluster structure of the map. Black
squares on this figure mean large distance between neigh-
boring map nodes. Clusters are typically uniform areas of
white squares. Each map is normalized by each distance.

From Fig. 3(b), although the outliers of the previous
LSOM is clear, it is difficult to find the configuration of
the input data. Meanwhile, the improved LSOM can easily
confirm the outliers and the configuration of clusters, as it
is clustering the input data exactly. Namely, the improved
LSOM obtain the most exact map reflecting the configura-
tion of clusters and the phase space of the input data.

3.2. For Atom data

Next, we consider a 3-dimensional input data called
Atom data set shown in Fig. 4(a) [5]. This data set has clus-
tering problems which is not linearly separable, namely,
different densities and variances. The total number of the
input data N is 800, and the input data has two clusters. We
repeated the learning 20 times for all input data, namely
T = 16000. The learning conditions are the same as those
in Subsection 3.1.

The learning results of the conventional SOM, the pre-
vious LSOM and the improved LSOM are shown in
Figs. 4(b), (c) and (d), respectively. For these results, we
see that the previous LSOM can self-organizes dispersed
input data compared with the conventional SOM, however,
it can not retain association between neurons. Meanwhile,
the improved LSOM can self-organizes dispersed input
data compared with the conventional SOM, furthermore,
it retains exactly retain association between neurons.

Table 2: Quantization error Qe, Topographic error Te and
Neuron utilization U for Atom data.

Qe Te U
Conventional SOM 0.0558 0.2725 0.8300
Previous LSOM 0.0509 0.4065 0.8200
LSOM 0.0483 0.2537 0.8500
Improvement rate of
LSOM from SOM 13.4116% 6.8807% 2.4096%

Table 2 shows the calculated measures. The quantiza-
tion error Qe of the improved LSOM is the smallest value
in the three algorithms and the neuron utilization U of the
improved LSOM is also the best value. Furthermore, by
using the improved LSOM, Qe has improved 13.4116%
from using the conventional SOM and U has improved
2.4096%. This means that there are few errors between the
input data and the neurons of learned map, in other words,
the improved LSOM can be most reflecting the distribu-
tion state of the input data. Besides, 85% of the neurons
of the improved LSOM are winner for one or more input
data, namely, there are few inactive neurons. We consider
these obtained results. The inactive neurons are on a part
without the input data. Therefore, if the inactive neurons
are few, more neurons can self-organize the input data of
clusters. In consequence, the distance between input data
and its neurons will be small respectively. Furthermore,
unlike the conventional SOM, the learning rate of the im-
proved LSOM does not decay to zero. Namely, in the clos-
ing stage of learning, neurons of the improved LSOM can
update. For these reasons, the quantization error Qe will
be a small value. Meanwhile, the topographic error Te of
the improved LSOM is the smallest value in the three al-
gorithms. Furthermore, by using the improved LSOM, Te
has improved 6.8807% from using the conventional SOM.
This is because unlike the previous LSOM, which does not
depend on time, the learning rate of the improved LSOM
resembles it of the conventional SOM. For these results, the
improved LSOM obtain the best results.

4. Behaviors of LSOM Considering Lazy-Neuron Rate

We apply LSOM to Target data set with changing the
lazy rate p from 0.2 to 0.9. The learning conditions are the
same as those in Subsection 3.1.

Figure 5 shows the improvement rate of LSOM using
the conventional SOM when carrying out the simulation
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Figure 3: Visualization of result for Target data. (a) Conventional SOM. (b) Previous LSOM. (c) LSOM.
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Figure 4: Simulation results for Atom data. (a) Input data. (b) Conventional SOM. (c) Previous LSOM. (d) LSOM.

with difference the lazy-neuron rate p. The quantization er-
ror Qe of LSOM has improved significantly than the con-
ventional SOM regardless of the lazy-neuron rate p. The
topographic error Te of LSOM containing 10% the lazy
neurons has improved significantly and containing 20% the
lazy neurons has improved slightly from using SOM. How-
ever, as the lazy-neuron rate p increase, the topographic er-
ror Te becomes worse. In addition, when LSOM contains
from 50 to 90 % lazy neurons, the neuron utilization U be-
comes worse slightly than SOM.

These results mean that the more the lazy-neuron rate p
increases, the more the association between neurons does
not retain. Namely, the improved LSOM containing from
10% to 20% lazy neurons can retain the association be-
tween neurons and obtains the effective and exact map re-
flecting the distribution state of the input data. In other
words, we can comprehensively evaluate that its condition
is the best balance.

5. Conclusions

In this study, We have proposed the improved Lazy Self-
Organizing Map (LSOM). The learning rate of the im-
proved LSOM is decided by each neuron’s character, lazy-
neuron rate and time. We have investigated efficacy of the
new algorithm and lazy-neuron rate of the improved LSOM
by applying these to some input data set. In consequence,
we can say that the improved LSOM containing from 10%
to 20% lazy neurons can obtains more effective and exact
map reflecting the distribution state of the input data.
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