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Abstract– In recent years, a public-key cryptosystem 
based on Chebyshev polynomials over 𝑍𝑍2𝑘𝑘  has been 
presented. Unfortunately, however, the cryptosystem is 
broken using knowledge of the periodic properties of 
Chebyshev polynomials. Although commutative 
polynomials with two variables can be candidates for the 
cryptosystem instead of Chebyshev polynomials, the 
periodic properties of the polynomials should be discussed 
carefully. In this study, we investigated the degree period of 
commutative polynomials with two variables over residue 
ring 𝑍𝑍2𝑘𝑘. 
 
1. Introduction 
 Since the first idea of public-key cryptosystems was 
introduced by Diffie and Hellman, various public-key 
cryptosystems have been proposed [1], [2]. In constructing 
public-key cryptosystems, the commutative property is an 
essential characteristic. A pure monomial 𝑥𝑥n , which 
appears in the Diffie–Hellman key exchange and RSA 
algorithms, and Chebyshev polynomials 𝑇𝑇𝑛𝑛(𝑥𝑥) are the only 
classes of commutative polynomials [3]. 
 Generally, public-key encryptions, such as RSA, are 
defined over a finite field or finite ring of a large number, 
which incurs computational cost. When the ring is 𝑍𝑍2k, the 
remainder operation is equivalent to simply taking the least 
significant bits, the computational cost of which is 
negligible. Therefore, a public-key cryptosystem over the 
ring of 𝑍𝑍2k  is very attractive. However, the discrete 
logarithm problem of 𝑥𝑥𝑛𝑛  over the ring is solved in 
polynomial time using the Pohlig–Hellman algorithm [4]. 
A public-key cryptosystem using Chebyshev polynomials 
over 𝑍𝑍2𝑘𝑘 has been introduced in [5] as a candidate for such 
cryptosystems. The cryptosystem can be viewed as chaos-
based cryptography because Chebyshev polynomials are a 
class of well-known chaotic mappings. Due to the sensitive 
dependence on initial conditions, chaotic systems often 
exhibit random-like behavior, which makes them popular 
candidates for building blocks of cryptosystems. However, 
the cryptosystem has been cryptanalyzed and shown to be 
insecure [6], which also means that we need commutative 
polynomials with at least two variables to construct public-
key cryptography over 𝑍𝑍2𝑘𝑘. 

 In recent years, high-dimensional commutative 
polynomials defined by recurrence relations as extended 
Chebyshev polynomials have been proposed [7]. The 
cryptosystem using Chebyshev polynomials has been 
cryptanalyzed based on knowledge of  periodic properties 
of Chebyshev polynomials over finite sets. It can be 
presumed from this fact that periodic properties of 
polynomials may be helpful in the analysis of 
cryptosystems. Therefore, investigation of the period is 
very important. 

In this study, we clarify some properties of the degree 
period of commutative polynomials with two variables 
over the ring 𝑍𝑍2k. 

 
2. Period of linear recurrence relation 

For convenience, we briefly introduce a linear recurrence 
sequence and its period. 

Let 𝑛𝑛 ≥ 0 and 𝑘𝑘 ≥ 1  be integers. The set 𝑍𝑍2𝑘𝑘  =
 {0,1, … , 2𝑘𝑘 − 1} is defined as the set of remainders of all 
integers modulo 2𝑘𝑘  that forms a ring with respect to 
addition and multiplication. Let 𝑍𝑍2𝑘𝑘[𝑡𝑡]  be a set of 
polynomials whose coefficients are the elements in 𝑍𝑍2𝑘𝑘 . 
For 𝑎𝑎(𝑡𝑡),𝑏𝑏(𝑡𝑡) ∈ 𝑍𝑍2𝑘𝑘[𝑡𝑡], 

 
𝑎𝑎(𝑡𝑡) ≡ 𝑏𝑏(𝑡𝑡) mod (𝑔𝑔(𝑡𝑡), 2𝑘𝑘) (1) 

means that there exists ℎ1(𝑡𝑡),ℎ2(𝑡𝑡) such that  
 

𝑎𝑎(𝑡𝑡)− 𝑏𝑏(𝑡𝑡) = ℎ1(𝑡𝑡)𝑔𝑔(𝑡𝑡) + ℎ2(𝑡𝑡)2𝑘𝑘 (2) 
 An n-th order recursive recurrence formula over 𝑍𝑍2𝑘𝑘  

𝑎𝑎𝑖𝑖+𝑛𝑛 ≡  −�𝑐𝑐𝑗𝑗𝑎𝑎𝑖𝑖+𝑗𝑗

𝑛𝑛−1

𝑗𝑗=0

 mod 2𝑘𝑘 (3) 

can generate a periodic sequence α = {𝑎𝑎𝑖𝑖}𝑖𝑖=0∞   from an 
initial value (𝑎𝑎0,𝑎𝑎1, … , 𝑎𝑎𝑛𝑛−1). From the above formula,  

𝑓𝑓(𝑡𝑡) = 𝑡𝑡𝑛𝑛 + �𝑐𝑐𝑗𝑗𝑡𝑡𝑗𝑗
𝑛𝑛−1

𝑗𝑗=0

(4) 

is called a characteristic polynomial, and we define the 
binary expansion of 𝑓𝑓(𝑡𝑡) as 

𝑓𝑓(𝑡𝑡) = �𝑓𝑓𝑖𝑖(𝑡𝑡)2𝑘𝑘
𝑘𝑘−1

𝑖𝑖−0

(5) 

Let 𝑇𝑇 be the minimum positive integer such that  
𝑡𝑡𝑇𝑇+𝑖𝑖 ≡ 𝑡𝑡𝑖𝑖 mod (𝑓𝑓0(𝑡𝑡), 2) (6) 
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Equation (6) also means that f0(t) divides tT-1 mod 2. 𝑇𝑇 =
per(𝑓𝑓0) denotes the period of 𝑓𝑓0(𝑡𝑡). The sequence period 
of α is given by the following theorem. 
Lemma 1[8] Let α = {𝑎𝑎𝑖𝑖}i=0∞   be an integer sequence 
generated by (3) and 𝑓𝑓(𝑡𝑡) be its characteristic function. The 
period of α is a divisor of 2𝑘𝑘−1per(𝑓𝑓0). 
 
In other words, the sequence period of α  is given by the 
period of the characteristic function 𝑓𝑓(𝑡𝑡). 
 
3. Degree period of commutative polynomials with two 
variables over 𝒁𝒁𝟐𝟐𝒌𝒌 
3.1 Definition 
 The Chebyshev polynomial is defined by the third-order 
linear recurrence relation, that is, 

𝐶𝐶0(𝑥𝑥) = 1 (7) 
𝐶𝐶1(𝑥𝑥) = 𝑥𝑥 (8) 

          𝐶𝐶n(𝑥𝑥) = 𝑥𝑥𝐶𝐶𝑛𝑛−1(𝑥𝑥) − C𝑛𝑛−2(𝑥𝑥) (9) 
The Chebyshev polynomials have a commutative property, 
which is given by 

𝐶𝐶𝑛𝑛�𝐶𝐶𝑚𝑚(𝑥𝑥)� =  𝐶𝐶𝑚𝑚�𝐶𝐶𝑛𝑛(𝑥𝑥)� = 𝐶𝐶𝑛𝑛𝑛𝑛(𝑥𝑥) (10) 
This property enables us to construct public-key 

cryptosystems. 
In [7], high-dimensional commutative polynomials were 

proposed as extended Chebyshev polynomials. One was 
obtained by fourth order recurrence relations with two 
variables 𝑥𝑥, 𝑦𝑦 using the following equations: 

 
𝑇𝑇0(𝑥𝑥, 𝑦𝑦) = (3, 3) (11) 
𝑇𝑇1(𝑥𝑥,𝑦𝑦) = (𝑥𝑥,𝑦𝑦) (12) 

      𝑇𝑇2(𝑥𝑥,𝑦𝑦) = (𝑥𝑥2 − 2𝑦𝑦,𝑦𝑦2 − 2𝑥𝑥) (13) 
𝑇𝑇3(𝑥𝑥, 𝑦𝑦) = (𝑥𝑥3 − 3𝑥𝑥𝑥𝑥 + 3,𝑦𝑦3 − 3𝑥𝑥𝑥𝑥 + 3) (14) 

𝑇𝑇𝑚𝑚(𝑥𝑥, 𝑦𝑦) =

⎝

⎜
⎛
𝑥𝑥𝑇𝑇𝑚𝑚−1,1(𝑥𝑥,𝑦𝑦)𝑥𝑥 − 𝑦𝑦𝑇𝑇𝑚𝑚−2,1(𝑥𝑥, 𝑦𝑦)𝑥𝑥

+𝑇𝑇𝑚𝑚−3, 1(𝑥𝑥,𝑦𝑦)𝑥𝑥 ,
𝑦𝑦𝑇𝑇𝑚𝑚−1,2(𝑥𝑥, 𝑦𝑦)𝑦𝑦 − 𝑥𝑥𝑇𝑇𝑚𝑚−2,2(𝑥𝑥, 𝑦𝑦)𝑦𝑦

+𝑇𝑇𝑚𝑚−3,2(𝑥𝑥,𝑦𝑦)𝑦𝑦 ⎠

⎟
⎞

, (15) 

 
where m is a degree of the polynomials. In the definition, 
when 𝑇𝑇𝑚𝑚(𝑥𝑥, 𝑦𝑦) = (𝑎𝑎, 𝑏𝑏), we define 𝑇𝑇𝑚𝑚,1(𝑥𝑥,𝑦𝑦) =
𝑎𝑎,𝑇𝑇𝑚𝑚,2(𝑥𝑥,𝑦𝑦) = 𝑏𝑏. 
 These polynomials are commute under compositions 
as with the Chebyshev polynomial, that is, 

𝑇𝑇𝑚𝑚�𝑇𝑇𝑛𝑛(𝑥𝑥, 𝑦𝑦)� = 𝑇𝑇𝑛𝑛�𝑇𝑇𝑚𝑚(𝑥𝑥, 𝑦𝑦)� = 𝑇𝑇𝑛𝑛𝑛𝑛(𝑥𝑥,𝑦𝑦) (16) 
The recurrence equation (15) can be rewritten as a matrix 
equation as follows: 

�
𝑇𝑇𝑚𝑚,1(𝑥𝑥,𝑦𝑦)
𝑇𝑇𝑚𝑚−1,1(𝑥𝑥,𝑦𝑦)
𝑇𝑇𝑚𝑚−2,1(𝑥𝑥,𝑦𝑦)

� = �
𝑥𝑥 −𝑦𝑦 1
1 0 0
0 1 0

�
𝑚𝑚−2

�
𝑥𝑥2 − 2𝑦𝑦

𝑥𝑥
3

� (17) 

and 

�
𝑇𝑇𝑚𝑚,2(𝑥𝑥, 𝑦𝑦)
𝑇𝑇𝑚𝑚−1,2(𝑥𝑥, 𝑦𝑦)
𝑇𝑇𝑚𝑚−2,2(𝑥𝑥, 𝑦𝑦)

� = �
𝑦𝑦 −𝑥𝑥 1
1 0 0
0 1 0

�
𝑚𝑚−2

�
𝑦𝑦2 − 2𝑥𝑥

𝑥𝑥
3

� , (18) 

where 𝑚𝑚 ≥ 3 . Hence, we compute the above matrix 
powering, which can be calculated effectively using the 
addition chain algorithm [9]. 

3.2 Degree period and its symmetry 
 The commutative polynomials represented by (15) of 
degree 𝑚𝑚 over residue ring 𝑍𝑍2𝑘𝑘 are given by 

𝑇𝑇𝑚𝑚(𝑥𝑥, 𝑦𝑦) mod 2𝑘𝑘 (19) 
As described in the previous subsection, we can 
efficiently calculate 𝑇𝑇𝑚𝑚(𝑥𝑥, 𝑦𝑦) ≡ (𝛼𝛼,𝛽𝛽) mod 2𝑘𝑘 
from 𝑚𝑚, 𝑥𝑥, and 𝑦𝑦  using the addition chain algorithm. In 
contrast, finding m from 𝑥𝑥,𝑦𝑦, and (𝛼𝛼,𝛽𝛽)  such 
that  𝑇𝑇𝑚𝑚(𝑥𝑥, 𝑦𝑦) ≡ (𝛼𝛼,𝛽𝛽) mod 2𝑘𝑘  seems difficult. The 
problem of solving a degree 𝑚𝑚  is called the degree 
determination problem. The security of a cryptosystem 
using the polynomials in (15) depends on the difficulty of 
the degree determination problem. Knowledge of the 
properties of the degree period can aid cryptoanalysis; 
therefore, we investigate the properties of the degree 
period. 

Let lcm(𝑎𝑎, 𝑏𝑏) be the least common multiple of 𝑎𝑎 and 𝑏𝑏. 
Let 𝑁𝑁 , 𝑁𝑁𝑥𝑥 , and 𝑁𝑁𝑦𝑦  be the minimum natural numbers that 
satisfy 
 

∀𝑖𝑖,𝑇𝑇𝑖𝑖+𝑁𝑁(𝑥𝑥, 𝑦𝑦) ≡ 𝑇𝑇𝑖𝑖(𝑥𝑥, 𝑦𝑦) mod 2𝑘𝑘 (20) 
∀𝑖𝑖,𝑇𝑇𝑁𝑁𝑁𝑁+𝑖𝑖,1(𝑥𝑥, 𝑦𝑦) ≡ 𝑇𝑇𝑖𝑖,1(𝑥𝑥,𝑦𝑦) mod 2𝑘𝑘 (21) 
∀𝑖𝑖,𝑇𝑇𝑁𝑁𝑁𝑁+𝑖𝑖,2(𝑥𝑥, 𝑦𝑦) ≡ 𝑇𝑇𝑖𝑖,2(𝑥𝑥,𝑦𝑦) mod 2𝑘𝑘 (22) 

 
Namely, 𝑁𝑁,𝑁𝑁𝑥𝑥 , and 𝑁𝑁𝑦𝑦 are the degree periods of 𝑇𝑇𝑚𝑚(𝑥𝑥, 𝑦𝑦), 
𝑇𝑇𝑚𝑚,1(𝑥𝑥, 𝑦𝑦), and 𝑇𝑇𝑚𝑚,2(𝑥𝑥, 𝑦𝑦), respectively. N is determined 
by 

𝑁𝑁 = lcm�𝑁𝑁𝑥𝑥 ,𝑁𝑁𝑦𝑦� (23) 
These degree periods are dependent on (𝑥𝑥, 𝑦𝑦). Therefore, 
we denote them as 𝑁𝑁(𝑥𝑥, 𝑦𝑦),𝑁𝑁𝑥𝑥(𝑥𝑥, 𝑦𝑦),  and 𝑁𝑁𝑦𝑦(𝑥𝑥,𝑦𝑦) if it is 
needed. 
 We now present an example, where k = 3, x = 5, and y 
= 1, as shown in Table 1. It can be observed from this table 
that 𝑁𝑁𝑥𝑥 = 𝑁𝑁y = 𝑁𝑁 = 4. 

Table 1 
Sequences of 𝑇𝑇𝑚𝑚(𝑥𝑥,𝑦𝑦) where k = 3, x = 5, y = 1 

𝑇𝑇𝑚𝑚(𝑥𝑥,𝑦𝑦) 𝑇𝑇𝑚𝑚(𝑥𝑥,𝑦𝑦) mod 2𝑘𝑘 
𝑇𝑇0(𝑥𝑥,𝑦𝑦) (3,3) 
𝑇𝑇1(𝑥𝑥, 𝑦𝑦) (5,1) 
𝑇𝑇2(𝑥𝑥,𝑦𝑦) (7,7) 
𝑇𝑇3(𝑥𝑥,𝑦𝑦) (5,1) 
𝑇𝑇4(𝑥𝑥, 𝑦𝑦) (3,3) 
𝑇𝑇5(𝑥𝑥,𝑦𝑦) (5,1) 
𝑇𝑇6(𝑥𝑥,𝑦𝑦) (7,7) 
𝑇𝑇7(𝑥𝑥,𝑦𝑦) (5,1) 
𝑇𝑇8(𝑥𝑥,𝑦𝑦) (3,3) 

⋮ ⋮ 
 
Next, we provide the following proposition. 
Proposition 1 𝑁𝑁(𝑥𝑥, 𝑦𝑦) = 𝑁𝑁(𝑦𝑦,𝑥𝑥) 
Proof: From the definition, 

T𝑚𝑚,1(𝑥𝑥, 𝑦𝑦) = 𝑇𝑇𝑚𝑚,2(𝑦𝑦, 𝑥𝑥) (24) 
T𝑚𝑚,2(𝑥𝑥, 𝑦𝑦) = 𝑇𝑇𝑚𝑚,1(𝑦𝑦, 𝑥𝑥) (25) 

which means that 𝑁𝑁𝑥𝑥(𝑥𝑥, 𝑦𝑦) = 𝑁𝑁𝑦𝑦(𝑦𝑦,𝑥𝑥) and 𝑁𝑁𝑦𝑦(𝑥𝑥,𝑦𝑦) =
𝑁𝑁𝑥𝑥(𝑥𝑥, 𝑦𝑦) . Substituting this into (23), 𝑁𝑁(𝑥𝑥, 𝑦𝑦)  =
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 lcm(𝑁𝑁𝑥𝑥(𝑥𝑥, 𝑦𝑦),𝑁𝑁𝑦𝑦(𝑥𝑥, 𝑦𝑦))  =  lcm(𝑁𝑁𝑦𝑦(𝑦𝑦,𝑥𝑥), (𝑁𝑁𝑥𝑥(𝑥𝑥, 𝑦𝑦))  =
 𝑁𝑁(𝑦𝑦, 𝑥𝑥).                                                                (Q.E.D) 

 
All the results of 𝑁𝑁(𝑥𝑥,𝑦𝑦)  are summarized in Table 2 

when k = 2. We confirmed that the degree period 𝑁𝑁(𝑥𝑥,𝑦𝑦) is 
the same as 𝑁𝑁(𝑦𝑦, 𝑥𝑥) .                      
All the results of 𝑁𝑁(𝑥𝑥,𝑦𝑦) are summarized in Table 2 when 
k = 2. We confirmed that the degree period 𝑁𝑁(𝑥𝑥, 𝑦𝑦) is the 
same as 𝑁𝑁(𝑦𝑦,𝑥𝑥).                      

 
Table 2 

All degree periods where k = 2 
x y 𝑁𝑁(𝑥𝑥, 𝑦𝑦) 
0 0 3 
0 1 14 
0 2 6 
0 3 14 
1 0 14 
1 1 2 
1 2 7 
1 3 4 
2 0 6 
2 1 7 
2 2 6 
2 3 14 
3 0 14 
3 1 4 
3 2 14 
3 3 1 

 
3.3 Possible values of the degree period 

Let 𝑓𝑓𝑥𝑥(𝑡𝑡) and 𝑓𝑓𝑦𝑦(𝑡𝑡) be the characteristic functions 
corresponding to 𝑇𝑇𝑚𝑚,1(𝑥𝑥, 𝑦𝑦) and 𝑇𝑇𝑚𝑚,2(𝑥𝑥, 𝑦𝑦), respectively. 
From (3) and (4), the characteristic functions are derived 
as  

𝑓𝑓𝑥𝑥(𝑡𝑡) = 1 − 𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑡𝑡2 − 𝑡𝑡3 (26) 
𝑓𝑓𝑦𝑦(𝑡𝑡) = 1 − 𝑦𝑦𝑦𝑦 + 𝑥𝑥𝑥𝑥2 − 𝑡𝑡3 (27) 

Then, we obtain the following proposition. 
 
Proposition 2 Degree period N is a divisor of the values 
given in Table 3. 

Table 3 
Degree period N when each of x, y is even or odd 

(x,y)  
(even, even) 3 ∙ 2𝑘𝑘−1 
(even, odd) 7 ∙ 2𝑘𝑘−1 
(odd, even) 7 ∙ 2𝑘𝑘−1 
(odd, odd) 4 ∙ 2𝑘𝑘−1 

 
Proof: From Lemma 1, 𝑁𝑁𝑥𝑥|2𝑘𝑘−1per(𝑓𝑓0𝑥𝑥),  where 𝑓𝑓0𝑥𝑥 =
𝑓𝑓𝑥𝑥(𝑡𝑡) mod 2 and a|b means that a is a divisor of b. When 
both 𝑥𝑥 and 𝑦𝑦  are even numbers, per(𝑓𝑓0𝑥𝑥) = 3  because 
𝑓𝑓0𝑥𝑥(𝑡𝑡) = 1 − 𝑡𝑡3. When x is an even number and y is an odd 
number, per(𝑓𝑓0𝑥𝑥) = 7  because 𝑓𝑓0𝑥𝑥(𝑡𝑡) = 1 + 𝑡𝑡2 + 𝑡𝑡3 
satisfies 𝑓𝑓0𝑥𝑥(𝑡𝑡)|1− 𝑡𝑡7. When x is an odd number and y is 
an even number, per(𝑓𝑓0𝑥𝑥) = 7 because we obtain𝑓𝑓0𝑥𝑥(𝑡𝑡) =

1 + 𝑡𝑡 + 𝑡𝑡3 satisfying 𝑓𝑓0𝑥𝑥(𝑡𝑡)|1− 𝑡𝑡7. When both x and y are 
odd numbers, per(𝑓𝑓0𝑥𝑥) = 4  because𝑓𝑓0𝑥𝑥(𝑡𝑡) = 1 + 𝑡𝑡 + 𝑡𝑡2 +
𝑡𝑡3 , which satisfies 𝑓𝑓0𝑥𝑥(𝑡𝑡)|1 − 𝑡𝑡4 . Using the same 
discussion above, it can be said that 𝑁𝑁𝑦𝑦 has the same result 
as 𝑁𝑁𝑥𝑥. Because 𝑁𝑁 = lcm�𝑁𝑁𝑥𝑥 ,𝑁𝑁𝑦𝑦�, this assertion is verified.      
                                               (Q.E.D) 
  
To confirm Proposition 2, we evaluate the period 𝑁𝑁 for all 
(𝑥𝑥,𝑦𝑦)  with 𝑘𝑘  = 4 and summarize the number of (𝑥𝑥, 𝑦𝑦) 
possessing each value of 𝑁𝑁  in Tables 4 to 7. It can be 
verified that the theoretical results agree with the 
experimental results. 
 

Table 4 
Distribution when x, y = (even, even) and k = 4 

N The number of (x, y) 
3 1 
6 7 

12 14 
24 32 

 
Table 5 

Distribution when x, y = (even, odd) and k = 4 
N The number of (x, y) 
7 1 

14 3 
28 12 
56 48 

 
Table 6 

Distribution when x, y = (odd, even) and k = 4 
N The number of (x, y) 
7 1 

14 3 
28 12 
56 48 

 
Table 7 

Distribution when x, y = (odd, odd) and k = 4 
N The number of (x, y) 
1 1 
2 3 
4 20 
8 8 

16 32 
 
 From Proposition 2, the maximum length of 𝑁𝑁 is 

𝑁𝑁max = 7 ∙ 2𝑘𝑘−1 (28) 
which can be obtained when 𝑥𝑥  or 𝑦𝑦  is an odd number 
over 𝑍𝑍2𝑘𝑘.  

Finally, we investigated the distribution of the period 𝑁𝑁 
for k = 5 to 8. Figures 1 to 4 show the distributions of 𝑁𝑁, 
where the horizontal axis denotes the value of period 𝑁𝑁 and 
the vertical axis denotes the number of (𝑥𝑥, 𝑦𝑦)  possessing 
such a period. It can be seen from these figures that there 
are many long periods, and the occurrence of the maximum 
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length is the highest. Because short periods are not secure 
from a cryptographic point of view, there might be no 
problem regarding the length of the degree period. 

 

 
Fig. 1. Distribution of period 𝑁𝑁 when k = 5 

 
Fig. 2. Distribution of period 𝑁𝑁 when k = 6 

 
Fig. 3. Distribution of period 𝑁𝑁 when k = 7 

 
Fig. 4. Distribution of period 𝑁𝑁 when k = 8 

 
 

4. Conclusion 
 In this study, we have clarified some periodic properties 
of the commutative polynomials defined by the fourth-
order linear recurrence relation over the residue ring 𝑍𝑍2𝑘𝑘.  
 Another important problem is the characterization of the 
sequence period generated by the polynomials. However, 
this topic requires further investigation. 
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