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Abstract—In this study, we investigate and analysis
some phenomena which are observed on a system that van
der Pol oscillators are coupled by inductors as a non-edge
lattice.

Furthermore, waveforms of double-scroll chaos are syn-
thesized by using a circuit of coupled oscillators, and are
predicted near future of the chaos waveform.

1. Introduction
A lot of things oscillate, and various phenomena are gen-

erated. For example, there are sea waves, motions of atoms,
the sound of insects and so on. Specifically, a lot of things
synchronize and regularities are observed in their motions.
For example, neuronal cells, emissions of many fireflies,
rumor synchronize, motion of stars, and so on. Further-
more, there are many things which continue to change
while oscillating, for example, a change of temperature,
stock prices, and exchange rate etc. Therefore, we can say
that it is important that the coupled oscillator systems are
researched.

Recently, we analyzed phenomena on a system which
many oscillators are coupled as a lattice[1]. Furthermore,
we made a system of coupled oscillators as a lattice, syn-
thesized applied single-scroll chaos waveform and pre-
dicted a waveform of near future of the chaos waveform.

In this study, many oscillators are coupled as a lattice,
and the one edge is coupled to a counter side edge. If phase
difference is given to an oscillator, the phase difference is
propagated when all oscillators are synchronized in-phase.
The propagation phenomena are observed and classfied.
We call the propagation phenomena a phase-wave. Fur-
thermore, we show that complex chaos waveform with the
double-scroll is synthesized by using a circuit of coupled
oscillators, which we suggested before.

2. Circuit model
In this study, many van der Pol oscillators are coupled

by inductors L0 as a lattice(see Fig.1). The one edge is
coupled to a counter side edge. Therefore, in the Fig. 1,
the leftside “A” and “B” are coupled to the rightside “A” and
“B” respectively, and the topside “C” and “D” are coupled
to the bottomside “C” and “D” respectively. The number of
row of the system is assumed as M. The number of column
of the system is assumed as N. Each oscillator is named as
OSC(k,l), a voltage of each oscillator is named as v(k,l), a
current that flows to inductor of each oscillator is named as
i(k,l) (see Fig.1).

The circuit equations of the circuit model of Fig.1 are
normalized by Eq.(1). The normalized circuit equations
are shown as Eq.(2)∼Eq.(10).
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Figure 1: Circuit Model.
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[Corner–top left]

dx(0,0)

dτ
= y(0,0) (2)

dy(0,0)

dτ
= −x(0,0) + α(x(0,N−1) + x(M−1,0) + x(0,1)

+ x(1,0) − 4x(0,0)) + ε(y(0,0) − 1
3

y3
(0,0))

[Corner–bottom left]

dx(M−1,0)

dτ
= y(M−1,0) (3)

dy(M−1,0)

dτ
= −x(M−1,0) + α(x(M−1,1) + x(0,0) + x(M−2,0)

+ x(M−1,N−1) − 4x(M−1,0)) + ε(y(M−1,0)

− 1
3

y3
(M−1,0))

[Corner–top right]

dx(0,N−1)

dτ
= y(0,N−1) (4)

dy(0,N−1)

dτ
= −x(0,N−1) + α(x(0,N−2) + x(0,0) + x(1,N−1)
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+ x(M−1,N−1) − 4x(0,N−1)) + ε(y(0,N−1)

− 1
3

y3
(0,N−1))

[Corner–bottom right]

dx(M−1,N−1)

dτ
= y(M−1,N−1) (5)

dy(M−1,N−1)

dτ
= −x(M−1,N−1) + α(x(M−1,N−2) + x(M−2,N−1)

+ x(M−1,0) + x(0,N−1) − 4x(M−1,N−1))

+ ε(y(M−1,N−1) − 1
3

y3
(M−1,N−1))

[Center(0 < k < M − 1 and 0 < l < N − 1)]

dx(k,l)

dτ
= y(k,l) (6)

dy(k,l)

dτ
= −x(k,l) + α(x(k−1,l) + x(k+1,l) + x(k,l−1)

+ x(k,l+1) − 4x(k,l)) + ε(y(k,l) − 1
3

y3
(k,l))

[Edge–top]

dx(0,l)

dτ
= y(0,l) (7)

dy(0,l)

dτ
= −x(0,l) + α(x(0,l+1) + x(1,l) + x(0,l−1)

+ x(M−1,l) − 4x(0,l)) + ε(y(0,l) − 1
3

y3
(0,l))

[Edge–bottom]

dx(M−1,l)

dτ
= y(M−1,l) (8)

dy(M−1,l)

dτ
= −x(M−1,l) + α(x(M−1,l−1) + x(M−2,l)

+ x(M−1,l+1) + x(0,l) − 4x(M−1,l)) + ε(y(M−1,l)

− 1
3

y3
(M−1,l))

[Edge–left]

dx(k,0)

dτ
= y(k,0) (9)

dy(k,0)

dτ
= −x(k,0) + α(x(k−1,0) + x(k,1) + x(k+1,0)

+ x(k,N−1) − 4x(k,0)) + ε(y(k,0) − 1
3

y3
(k,0))

[Edge–right]

dx(k,N−1)

dτ
= y(k,N−1) (10)

dy(k,N−1)

dτ
= −x(k,N−1) + α(x(k,N−2) + x(k−1,N−1) + x(k+1,N−1)

+ x(k,0) − 4x(k,N−1)) + ε(y(k,N−1) − 1
3

y3
(k,N−1))

The α corresponds to the coupling of the oscillators.
The ε corresponds to nonlinearity of each oscillator. These
equations are calculated by the fourth Runge-Kutta meth-
ods.
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Figure 2: Domains of observation phenomena(α vs ε).
3. The propagation phenomena of phase-waves

In-phase synchronization of all oscillators can be ob-
served in this circuit. We can observe phenomena that
phase differences between adjacent oscillators propagate
on this system. We call this phenomena phase-waves. The
phase-waves are observed.

3.1. observation conditions

In this section, observation conditions are fixed as follows.

1. M and N are fixed as 11.

2. The initial values of all oscillators are entered same
value.

3. The phase-wave is generated from OSC(5,5).

4. The coupling parameter α is changed from 0.01 to 0.1
every 0.01, and nonlinearity ε is changed from 0.1 to
1 every 0.01.

3.2. Observation results

Observed phenomena are classified into four patterns.
The observation results are shown from Figs. 2–5. Fig-
ure 2 shows the domain of the observed phenomena. The
vertical axis expresses nonlinearity, and the horizontal axis
expresses coupling. Figure 3–“A” shows the attractor of
each circuit. The horizontal axis expresses voltage y(n,m),
and the vertical axis expresses current x(n,m). Figure 3–“B”
shows a transition of a phase difference between adjacent
oscillators. The horizontal axis expresses time, and the ver-
tical axis expresses a voltage which is sum of two voltages
of adjacent oscillators. The vertical axis is y(n,m)+y(n+1,m) or
y(n,m)+y(n,m+1). The amplitude doubles if in-phase synchro-
nization is observed between adjacent oscillators. On the
other hand, the amplitude becomes zero if anti-phase syn-
chronization can be observed between adjacent oscillators.
We show our results of each class.
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(a) τ = 0 ∼ 10000.

A B generated at the OSC(5,5)
(0,0)

(Μ−1,0)

(0,Ν−1)

(Μ−1,Ν−1)

(b) τ = 10000 ∼ 20000.

Figure 3: Observation phase-waves in domain A (α=0.01
ε=1.00).

3.2.1. domain A (see Fig.3)

Figures 3 shows observed phase-waves. Figure 3(b) is
a figure of continuation of Fig. 3(a). The phase-wave is
generated at OSC(5, 5). The phase-wave is propagated like
the ripple of water from the OSC(5,5). The phase-wave
arrives at OSC(5,1), OSC(5,9) and OSC(3,8) on the same
time in Fig. 3(a). The distances between OSC(5,1) or
OSC(5,9) and OSC(5,5) are 4, if distance from OSC(5,5)
to OSC(5,4) is counted as 1. However,the distance between
OSC(5,5) and OSC(3,8) is 5. Therefore, the propagating
phase-wave diagonal of this system is easy than propagat-
ing phase-waves on the column and the row. Further, the
phase-wave seems not to reach the edge of the figure. How-
ever, the phase-wave arrives to the edge of figure, collides a

Figure 4: Observation phase-waves in domain B (α=0.05
ε=0.93).

(a) τ = 0 ∼ 10000.

(b) τ = 10000 ∼ 20000.

Figure 5: Observation phase-waves in domain C (α=0.05
ε=0.47).

Figure 6: Observation phase-waves in domain D (α=0.05
ε=0.47).

phase-wave from other side, and reflects. Finally, complex
phenomena can be observed.

3.2.2. domain B (see Fig.4)

Figures 4 shows observed a phenomenon. A phase dif-
ference is given to OSC(5, 5). The phase difference does
not become the clear phase-wave. Only complex phe-
nomenon can be observed at once.

3.2.3. domain C (see Fig. 5)

Figure 5 shows observed phase-waves. Figure 5(b) is a
figure of continuation of Fig. 5(a). A phase difference is
given to OSC(5, 5). Only phase-waves which propagate di-
agonally can be observed, but the propagation phenomenon
is hard to see. The phase-waves arrives at OSC(2,1),
OSC(2,10), OSC(10,1) and OSC(10,10) (see markings of
a circle in Fig. 5(b)). The three phase-waves coming from
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three directions are collided around at these oscillator, and
the phase-waves with large phase difference are generated.
Finally, these phase-waves are propagated to all oscillators.

When the number of oscillators is an odd number, the
phenomenon in domain C is ovserved. Therefore, obeserv-
ing phenomena in domainC depend on the numberof oscil-
lators.

3.2.4. domain D (see Fig. 6)

Figure 6 shows observed phase-waves. A phase differ-
ence is given to OSC(5, 5). Generated phase-waves be-
come to disappear while propagating, or collide phase-
waves from other side and become to disappear.

4. the generating arbitrary waveform

We developed a technique, which uses coupled oscil-
lators system, for prediction of an arbitrary time-series
data(see Fig.7)[1]. In this section, we use 9 oscillator for
this system. In this paper, a time-series data of Chua’s
chaos circuit is used as the arbitrary original time-series
data. Chua’s chaos circuit have double-scroll attractor.
Therefore, the time-series data of the chaos circuit is com-
plex more than the original data used in our previous study.
The original time-series data is entered through the induc-
tors Lout(k,l)(see Fig.7). The arbitrary time-series data is as-
sumed f (t1). A prediction of the arbitrary time-series data
is assumed g(t2).

This circuit equations include coupling parameterαout(k,l)
which is used for connecting with a signal generator gen-
erating the arbitrary time-series data. The coupling pa-
rameters and nonlinearity are individually changed for
each oscillator. Therefore, a nonlinearity for an oscillator
OSC(x,y) is assumed ε(x, y). Four coupling parameters of
between adjacent oscillators are expressed as αh(x,y)−(x,y+1),
αh(x,y)−(x,y−1), αv(x,y)−(x+1,y), and αv(x,y)−(x−1,y). The equations
of OSC(0,0) is shown as Eq.(11).
[Corner–top left]dx(0,0)

dτ
= y(0,0) (11)

dy(0,0)

dτ
= −x(0,0) + αh(0,0)−(0,1)(x(0,1) − x(0,0))
+ αv(0,0)−(1,0)(x(1,0) − x(0,0))+ αout(0,0)(xs − x(0,0)) + ε(y(0,0) − 1

3
y3

(0,0))
k = 0, and l = 0.

The center oscillator OSC(2,2) is not used αout(k,l). These
equations are calculated by the fourth Runge-Kutta meth-
ods in this study.

The prediction data of f (t1) is made by method as fol-
lows:

1. The arbitrary time-series data from f (0) to f (2T ) is
added. Generating data g(t2):(T < t2 ≤ 2T ) are ad-
justed to values close to f (t1):(3T < t1 ≤ 4T ) by
individually changing α, ε, αout, and eighteen initial
values of each oscillator. The “T” expresses arbitrary
time.

2. The arbitrary time-series data from f (2T ) to f (3T ) is
added. We can think that generating data g(t2):(2T <
t2 ≤ 3T ) are data close to f (t1):(4T < t1 ≤ 5T ). In
other word, we can think that f (t1) can be predicted.

In this section, the initial value shifts positive and negative
as follows.g(0) = ± f(2T ) (12)

 Lout(0,0) Lout(0,1) Lout(0,2)

Lout(1,0) Lout(1,2)

Lout(2,0) Lout(2,1) Lout(2,2)

Figure 7: System for synthsisis and prediction.
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Figure 8: Prediction data and data waveform.
The results of prediction are shown in Fig.8 while t1 and

t2 are changed from 4T to 6T . The T equals 2000[τ].
The plain-line shows the prediction data g(t2). The dot-

line shows the original data f (t1). We can observe similar
waveform between the prediction waveform and the origi-
nal waveform.
5. Conclusion

In this study, we investigated and analyzed some phe-
nomena which are observed on a system where oscilla-
tors are coupled by inductors as a lattice coupling opposite
edges. The observed phenomena were able to be classi-
fied into four domains. In the domain A, the phase-waves
are propagated like the ripple of water from OSC(5,5). Fi-
nally, only the complex phenomena can be observed. In
the domain B, the phase difference, which is applied into
OSC(5,5), does not become the clear phase-waves. Only
complex phenomena can be observed at once. In the do-
main C, only phase-waves which propagate diagonally can
be observed, but the propagation phenomenon is hard to
see. The three phase-waves coming from three directions
collide, and the phase-waves, which have a large phase
difference, were generated and become a complex phe-
nomenon. In the domain D, generated phase-waves be-
come to disappear while propagating, or collide phase-
waves from other side and become to disappear.

We were able to synthesize and predict a waveform of
Chua’s circuit generating double-scroll attractor which is
more complex than waveform synthesized in our previous
study. The synthesis waveform included errors, but, syn-
thesis waveform closed to an original waveform. There-
fore, we can think that our method have possibilities to be
able to predict more complex waveform of natural world.
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