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Abstract—Amplitude death, the coupling induced sta-
bilization of unstable fixed points, is observed in a pair
of time-delayed chaotic oscillators coupled by the static
connection. The cluster treatment of characteristic roots
methodology allows us to estimate the boundary curves of
the death region in a parametric space. This region can be
utilized to streamline the design of the long delay times ap-
propriately for inducing amplitude death. The analytical
results are verified by electronic circuit experiments.

1. Introduction

Amplitude death, a diffusive connection induced stabi-
lization of unstable fixed points in coupled oscillators, has
been a subject of extensive investigation in the last 15 years
[1, 2]. Aronson et al. analytically investigated death phe-
nomenon for two coupled nonlinear oscillators [2]. They
reported that death never occurs in coupled identical os-
cillators. Reddy, Sen, and Johnston showed that a time-
delayed coupling effect, which exists owing to the finite
speed of data propagation, is able to induce the amplitude
death even in coupled identical oscillators [3]. Their report
has considerably intrigued in the field of nonlinear physics
[4]. Atay showed that the distributed time-delay connec-
tions facilitate amplitude death [5]. Konishi et al. reported
that the multiple delay [6] and time-varying delay [7] con-
nections can also facilitate amplitude death in coupled os-
cillators.

In order to use death in practical situations, one has to
design a mutual connection that induces death. However,
one inevitably confronts two problems for such a design.
The first problem is how to select the type of mutual inter-
actions and how to determine the coupling parameters. The
second one is how to deal with high-dimensional oscilla-
tors. The previous paper provided a solution for the above
problems [8] and, in particular, focused on the amplitude
death in a pair of time-delayed chaotic oscillators [9] cou-
pled by three types of mutual interactions: static connec-
tions, dynamic connections, and delayed connections.

Since time delay systems have been widely employed
to model undesirable nonlinear phenomena such as chatter
and chaos in metal cutting tools [10, 11], the stabilization
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Figure 1: Block diagram of a pair of oscillators (1) coupled
by connection (2).

of time-delay systems has been an important issue for en-
gineering applications. The previous paper concluded that
the amplitude death can occur with the dynamics and de-
layed connections, but cannot with the static one [8]. Al-
though the dynamic and delayed connections are not easy
to implement in experimental situations due to their com-
plicated structure, the static connection has a simple struc-
ture. Therefore, the static one is the best solution from a
cost standpoint.

The present paper theoretically and analytically consid-
ers the stability of a pair of non-identical time-delayed os-
cillators coupled by the static connection. The traditional
procedure for the stability analysis is difficult to employ for
deriving the boundary curves of death, since its character-
istic equation includes a cross-talk term between the non-
identical delays. To overcome this difficulty, the present
paper applies the methodology proposed by Sipahi and Ol-
gac [12] to the characteristic equation. This methodology
allows us to derive the boundary curves of death which
are useful to design the delay times without trial-and-error
testing. Furthermore, our theoretical results are verified by
electronic circuit experiments.

2. Time-delayed chaotic coupled oscillators

Let us consider the pair of non-identical scalar time-
delayed chaotic oscillators (see Fig. 1) [8]:

⎧
⎪⎪⎨
⎪⎪⎩

ẋ1 = f (x1τ1 ) − αx1 + u1

ẋ2 = f (x2τ2 ) − αx2 + u2
, (1)

where x1,2 ∈ R and u1,2 ∈ R are the system states and cou-
pling signals, respectively. x1τ1,2τ2 := x1,2(t − τ1,2) are the
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delayed states, τ1,2 ≥ 0 are the delay times and α > 0 is a
parameter, f : R→ R represents a nonlinear function. The
symbol R denotes the set of real numbers. These oscillators
are coupled by the static connection described as

u1,2 = k(x1,2 − x2,1), (2)

where k ∈ R is the coupling strength.
Each individual oscillator without coupling (i.e., u1,2 ≡

0) has the fixed points

x∗ : 0 = f (x∗) − αx∗. (3)

Throughout this paper, it is assumed that there is one un-
stable fixed point. The location of the fixed point x∗ never
changes even by coupling; in other words, the static con-
nection changes only the stability of the point. The charac-
teristic equation of linearized system at the fixed point x∗
can be rewritten as

a0(λ) + a1(λ)e−λτ1 + a2(λ)e−λτ2 + a3e−λ(τ1+τ2) = 0, (4)

where

a0(λ) := s2 + 2(α − k)λ + (α − k)2 − k2, (5)
a1(λ) = a2(λ) := −βλ − β(α − k), (6)

a3 := β2, (7)
β := {d f (x)/dx}x=x∗ . (8)

The nonlinear function f is given by

f (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ −4/3
−1.8x − 2.4 if − 4/3 < x ≤ −0.8
1.2x if − 0.8 < x ≤ 0.8
−1.8x + 2.4 if 0.8 < x ≤ 4/3
0 if x > 4/3

, (9)

as a typical case study [13]. The three fixed points of indi-
vidual oscillator located at the intersection of f (x) and αx:
x∗ = ±6/7 and 0. The slopes of f (x) at x∗ can be estimated
as β(±6/7) = −1.8 and β(0) = 1.2. The parameters are
fixed at α = 1 and k = −2. Additionally, characteristic
equation (4) in the absence of delays (i.e., τ1 = τ2 = 0)
has two roots -6.79 and -2.80, thus the number of unstable
roots is zero.

3. Death region and boundary curves

The cluster treatment of characteristic roots (CTCR)
paradigm is capable of deriving the boundary curves of a
stability region in (τ1, τ2) space [12]. To simplify the sta-
bility analysis, we only identify the roots lied on the imag-
inary axis: λ = jλIm, where the symbol j is denoted as
j =

√−1. The stability posture in (τ1, τ2) space is shown
in Fig. 2, where the amplitude death region is symbolized
by Ω. Every point on the boundary curves correspond to
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Figure 2: Death region Ω and the boundary curves of sta-
bility.

200 300 400 500 600 700 800 900 1000
0.7

0.8

0.9

1

 t

 x
1

200 300 400 500 600 700 800 900 1000
0.7

0.8

0.9

1

 t

 x
2

Figure 3: Time series data x1,2(t) of coupled oscillators (nu-
merical simulation): (A) τ1 = 4.4, τ2 = 6.8.

the purely imaginary root. The numbers of unstable roots
are stated in several regions.

Figures 3 and 4 illustrate the time series data of the two
non-identical oscillators for the two parameter sets: (A)
τ1 = 4.4, τ2 = 6.8; (B) τ1 = 3.4, τ2 = 6.8. These sets
are indicated in Fig. 2. For the parameter set (A), the
two identical oscillators without coupling behave chaoti-
cally until t = 500, and become periodical after coupling.
On the other hand for the parameter set (B), the two indi-
vidual oscillators before coupling has the chaotic motion.
After coupling the states x1,2(t) converge on x∗1,2.

From the death region on a wide scale as shown in Fig.
5, it seems that one may choose (τ1, τ2) arbitrarily large to
obtain death, if they are within the strips (see the dotted
lines in Fig. 5), τ1,2 = 2τ2,1 + ξ, 0 ≤ ξ ≤ 2. The static
connection can induce death over a long delay-time region
Ω. However, we do not still have the proof for this fact.
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Figure 4: Time series data x1,2(t) of coupled oscillators (nu-
merical simulation): (B) τ1 = 3.4, τ2 = 6.8.

Figure 5: Death region and the boundary curves of stability
on a wide scale.

4. Electronic circuit experiments

The two chaotic oscillators coupled by the static connec-
tion are sketched in Fig. 6. The delay units employ the
bucket brigade delay line MN3011 (Panasonic) to generate
the delayed signal [8] and the nonlinear function is imple-
mented by the three opamps and the two diodes.

Here, xi denotes the voltage of the i-th oscillator. The
boxes labeled −τi and f are the time delay unit and the
nonlinear function unit, respectively. These oscillators are
governed by
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Cnẋ1(t) =
1
Rn

{ f (x1(t − τ1)) − x1(t)} + u1(t)

Cnẋ2(t) =
1
Rn

{ f (x2(t − τ2)) − x2(t)} + u2(t)
, (10)

where Rn, Cn are a resistor and capacitor, respectively. The
coupling terms u1,2(t) are the currents from the connection
circuit to the oscillators. The static connection is described
by

u1,2(t) = − 1
R
{
x1,2(t) − x2,1(t)

}
. (11)

Figure 6: Two time-delay chaotic oscillators coupled by a
static connection.

Figure 7: Nonlinear function f (x). Horizontal axis: x
(1V/div); vertical axis: f (x) (1V/div).

It is sufficient to treat the above circuits as the dimension-
less oscillators (1) on the following relations:

t̃ :=
t

RnCn
, τ̃1,2 :=

τ1,2

RnCn
,

ẋ1,2 :=
dx1,2(t̃)

dt̃
, x1,2 := x1,2(t̃), x1,2τ := x1,2(t̃ − τ̃1,2),

u1,2 := u1,2(t̃), k := −Rn

R
.

These relations show that circuit equation (10) is identical
to equation (1) with α = 1. The input-output characteris-
tic of the nonlinear function unit is shown in Fig. 7. From
the characteristic, the fixed point x∗ = 2.2 V and the slope
β(x∗) = −1.8 are approximately estimated. The circuit pa-
rameters and the coupling resistor are fixed at Rn = 1.0 kΩ,
Cn = 1.0 μF, and R = 0.5 kΩ. We consider two parame-
ter sets: (A) τ1 = 4.4 ms, τ2 = 6.8 ms; (B) τ1 = 3.4 ms,
τ2 = 6.8 ms. In dimensionless oscillators (1), τ̃1,2 for the
two parameter sets correspond to (A) τ̃1 = 4.4, τ̃2 = 6.8;
(B) τ̃1 = 3.4, τ̃2 = 6.8, which indicated as the points A and
B on Fig. 2.

Figures 8(a) and 8(b) show that the individual oscillator
at the parameter set (A) exhibits chaotic behavior. When
the switch S shown in Fig. 6 is closed, the two individ-
ual circuits are connected by the coupling resistor. Af-
ter S is closed, the chaotic behavior changes to a periodic
motion, but death is not observed as shown in Fig. 8(c).
For the parameter set (B), the individual oscillator exhibits
chaotic behavior (see Figs. 9(a) and 9(b)). The oscilla-
tors behave chaotically until S is closed. As shown in Fig.
9(c), the states x1,2(t) gradually converge on x∗1,2: the am-
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Figure 8: Experimental verification at parameter set (A):
(a) chaotic behavior of oscillator 1; (b) chaotic behavior of
oscillator 2 (horizontal axis: x(t − τ) (0.5V/div), vertical
axis: x(t) (0.5V/div)); (c) time series data x1,2(t) (V) just
before and after coupling.

plitude death occurs, after S is closed. This experimental
study confirms that the estimated death region by analyt-
ical insight in the preceding section agrees well with the
electronic circuit experiments.

5. Conclusion

The present paper investigated the static connection
induced amplitude death in the two non-identical time-
delayed chaotic oscillators. The precise shape of the death
region derived by the CTCR paradigm leads to the conclu-
sion that even the relatively long delay times can induce
the amplitude death. This perspective seems to be impor-
tant, because systems with large delay are frequently met
in various fields of applications. Moreover, our analytical
results are experimentally confirmed by the real electronic
oscillators.
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