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Abstract—In this study, synchronization phenomena of
van der Pol oscillators coupled by resistors in a ring are in-
vestigated, when the frequency error are added to some os-
cillators. Using computer simulations, we observe that the
van der Pol oscillators with frequency error can produce the
nonlinear phenomena related with synchronization such as
oscillation death, independent oscillation and double-mode
oscillation.

1. Introduction

Various synchronization phenomena observed in cou-
pled oscillatory systems have the possibility to model high
functional information processing of a human brain. Such
oscillatory systems can produce the interesting phase pat-
tern including: wave propagation, clustering, complex
phase pattern [1]–[4]. Setou et al. have observed inter-
esting synchronization phenomena when van der Pol oscil-
lators with different oscillation frequencies are coupled by
a resistor as a star structure [5]. However, it is difficult to
investigate synchronization phenomena of large-scale cir-
cuits, because, van der Pol oscillators coupled in a star
topology do not synchronize when the number of coupling
oscillators is larger than 4.

In this study, we consider a ring consisting of van der
Pol oscillators with different oscillation frequencies for in-
vestigation of large-scale circuits. It is possible to add the
frequency error to the van der Pol oscillators by setting the
different value of a capacitor of oscillators from the others.
Using computer simulations, we observe that the van der
Pol oscillators with frequency error can produce synchro-
nization phenomena such as oscillation death, independent
oscillation and double-mode oscillation for large-scale os-
cillatory systems. Furthermore, we investigate four types
of arrangements of the van der Pol oscillators with fre-
quency error and investigate the synchronization phenom-
ena for each coupling method.

2. Circuit Model

The basic circuit model and the concept of circuit system
are shown in Fig. 1. In the system, only the Nth oscillator

has different oscillation frequency from the others. We re-
alize the frequency error of the Nth van der Pol oscillator
by setting the different value of the capacitor of this oscil-
lator in comparison to the others.

2L2L iak ibk 2L 2Lia(k+1) ib(k+1)

C

iRk

v(k+1)

C

iRk

vk

rm rm rmrm

C

RN

vN

i

α

2L
2L

(k+1)-th oscillator k-th oscillator N-th oscillator...

RR R

(a) Ring of van der Pol oscillators.

with different frequency

ω=1

ω=1

ω=1ω=1

ω=1

ω=?

(b) Conceptual circuit model.

Figure 1: Circuit model and concept of circuit system.

First, we assume that the vk − iRk characteristics of the
nonlinear resistor in each oscillator is represented by the
following third order polynomial equation.

iRk = −g1vk + g3vk
3 (1)

By changing the variables and the parameters,
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the normalized circuit equations of the ring of oscillators
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are given as
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=
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xk − ηybk − γ(ya(k−1) + ybk))

(k = 1, 2, · · · ,N)

(2)

where
ya0 = yaN , yb(N+1) = yb1. (3)

It should be noted that ωk denotes the frequency of kth os-
cillators, γ corresponds to the coupling strength and that
ε corresponds to the nonlinearity of oscillators. Eq. (2) is
calculated by using the fourth-order Runge-Kutta method.

3. Synchronization Phenomena

Figure 2 shows the observed phenomena for coupling
oscillator number N=3. For the case that all of these os-
cillations have the same frequency, we can observe that
the system is synchronized at the three-phase (Fig. 2(a)).
When the frequency of the 3rd oscillator is varied, we con-
firm that oscillation of the 3rd oscillator stops, namely os-
cillation death appears (Fig. 2(b)). As increasing the fre-
quency of the 3rd oscillator, oscillation of the 3rd oscillator
starts again (Fig. 2(c)). However, the 3rd oscillator is not
synchronized to the others. Namely, the 3rd oscillator os-
cillates alone and the others keep anti-phase synchroniza-
tion. Furthermore, we observe the double-mode oscillation
as shown in Fig. 2(d).

Next, we calculate the relationship between the ampli-
tude of the Nth oscillator and the frequency ωN when the
nonlinearity parameter are changed from ε=0.06 to 0.2.
The simulated results for N=3, 4, 9, 10, 15 and 16 are
shown in Fig. 3. The graph form of amplitude is differ-
ent between odd and even number of coupling oscillators.
In the case of odd number, the amplitude takes the peak on
ωN=1.0 and around ωN=1.2 the oscillation death appears
when the nonlinearity parameter εN is set to 0.06. While, in
the case of even number, although the amplitude takes the
peak on ω=1.0, the oscillation death can not be observed.

Figure 4 shows the frequency at the break down of the
anti-phase or N-phase synchronization by changing the
number of oscillators. From these results, we confirm that
the even number coupling is more stable than the odd num-
ber coupling systems for the frequency error.

4. Group Coupling

In this section, we investigate four types of arrangements
of the van der Pol oscillators with frequency error and in-
vestigate the synchronization phenomena for each coupling
method.
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(a) Three-phase synchronization (ω1=ω3=ω3=1.0).
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(b) Anti-phase and oscillation death (ω1=1.0, ω2=1.0, ω3=0.64).
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(c) Anti-phase and independent oscillation (ω1=1.0, ω2=1.0, ω3=3.47).
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(d) Double-mode oscillation (ω1=1.0, ω2=1.0, ω3=1.07).

Figure 2: Computer calculation for N=3 (ε = 0.2, γ = 0.2,
η = 0.01).

4.1. Two groups

First, we consider that the coupled oscillatory systems
are composed of two groups with different oscillatory fre-
quencies as shown in Fig. 5. In the Type-A, the two types
of oscillators with different frequencies are set to half and
half. And, in the case of Type-B, we place the two types of
oscillators alternately. From Fig. 5, α denotes the different
frequency to the standard oscillators with ω=1.0. As a first
step, we consider the case of that number of coupling os-
cillators are set to even number to distinguish two groups
clearly.

The simulated results of Type-A are shown in Fig. 6.
From this figure, we confirm that each group are synchro-
nized in anti-phase with own frequency and two groups do
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(a) N=3. (b) N=4.
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(c) N=9. (d) N=10.
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(e) N=15. (f) N=16.

Figure 3: Relation between amplitude and ωN .
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Figure 4: Frequency for break down of synchronization
(ε = 0.2, γ = 0.2, η = 0.01).

not synchronize. Figure 7 shows the observed phenomena
of coupled oscillators as Type-B. In this case, every oscil-
lators are not synchronized. When the value of α equal to
0.64, the oscillation death can be observed (Fig. 7(a)).

Next, we compare the break down frequency from
synchronization to non-synchronization between Type-A
and Type-B coupling methods by changing the num-
ber of coupling oscillators from 4 to 14. Where ”non-
synchronization” denotes the break down of group syn-
chronization. Figure 8 shows the frequency for break down
of synchronization. In the case of Type-A, the synchro-
nization area is decreasing with number of coupling oscil-
lators. While in the case of Type-B, the frequency at break
down of synchronization is constant even if the number of
coupling oscillators is changed. We confirm that Type-B
is more stable for synchronization by increasing the fre-
quency error than Type-A coupling.
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Figure 5: Coupling model for two groups.
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(b) α=3.47.

Figure 6: Computer simulation results of Type-A (N=6).

4.2. Three groups

Next, we consider that the coupled oscillatory systems
are composed of three groups with different oscillatory fre-
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Figure 7: Computer simulation results of Type-B (N=6).
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Figure 8: Frequency for break down of synchronization
(ε = 0.2, γ = 0.2, η = 0.01).

quencies as shown in Fig. 9. In the Type-C, the three types
of oscillators with different frequencies are set as shown
in Fig. 9(a). And, in the case of Type-D, we place the
three types of oscillators alternately. From Fig. 9, α and β
denote the different frequencies to the standard oscillators
with ω=1.0.

The simulated results are shown in Fig. 10. From this
figure, in the case of Type-C, we confirm that each group
are synchronized in anti-phase with own frequency and two
groups do not synchronize. In the Type-D, any adjacent
oscillators are not synchronized.

5. Conclusions

In this study, we have investigated a ring coupling van
der Pol oscillators with different oscillation frequencies.
By computer simulations, we observe that the van der Pol
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Figure 9: Coupling model for three groups.
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Figure 10: Computer simulation results of Type-C and
Type-D (N=6, α=0.64, β=3.47).

oscillators with frequency error can produce the interesting
nonlinear phenomena such as oscillation death, indepen-
dent oscillation and double-mode oscillation.
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