
Bifurcation Phenomenon from Stick-slip Vibration to Slip Vibration
in the Non-autonomous System with Dry Friction

Masahiro Wakai†, Hiroki Amano†, Yutsuki Ogura†, Naohiko Inaba‡

Hiroyuki Asahara∗ and Takuji Kousaka†

† Faculty of Engineering, Oita University,
700 Dannoharu, Oita-shi, Oita 870-1192, Japan.

‡ Organization for the strategic Coordination of Reseach and Intellectual Property, Meiji University,
1-1-1 Higashi-mita, Kawasaki-shi, Kanagawa 214-8571, Japan.
∗ Faculty of Engineering, Okayama University of Science,
1-1 Ridai-cho, Okayama-shi, Okayama 700-0005, Japan.

Email: {wakai, amano, yutsuki}@bifurcation.jp, naohiko@yomogi.jp,
asahara@ee.ous.ac.jp, takuji@oita-u.ac.jp

Abstract—In the non-autonomous system with dry fric-
tion, the bifurcation phenomena are observed upon vary-
ing parameters such as the coefficient of friction and the
amplitude of the external force. In this paper, we dis-
cuss the bifurcation phenomenon from stick-slip vibration
to slip vibration in the non-autonomous system with dry
friction. First, we explain the physical model of the non-
autonomous system with dry friction. Next, we define the
Poincaré map by focusing on the local sections and the
time. Finally, we investigate the bifurcation phenomenon.

1. Introduction

Non-autonomous system with dry friction is often ob-
served in the mechanical fields. The typical examples of
the system are seismic isolation systems [1], disk brakes
[2], dynamic absorbers [3] and rail wheels [4]. It is known
that the bifurcation phenomena are observed in these sys-
tems upon varying parameters such as the coefficient of
friction and the amplitude of the external force [5]- [9].
Thus, it is important to analyze the bifurcation phenom-
ena in a wide parameter area. However, the systems are
difficult to analyze due to theirs complexity. Therefore, the
physical model was proposed to analyze the system in de-
tail [9]. There are many papers that have analyzed bifur-
cation phenomena occurring in the physical model. Some
papers investigated generating region of chaos and periodic
pull-in vibration of harmony vibration. We also proposed
a simple stability analysis method for this model [10] and
analyze bifurcation phenomena in a wide parameter area
[11]. However, there are few papers discuss the bifurcation
analysis from stick-slip vibration to slip vibration.

In this paper, we analyze the bifurcation phenomenon
from stick-slip vibration to slip vibration in the non-
autonomous system with dry friction. First, we explain
the physical model of the non-autonomous system with dry
friction. Next, we show the Poincaré map by focusing on
the local sections and the time. Finally, we clarify the bi-

furcation phenomenon.

2. System and its behavior

Figure 1 shows the physical model of the non-
autonomous system with dry friction, which has single de-
gree of freedom. The following notation is used; mass m,
spring constant k, displacement of mass u(t) and velocity
u̇, gravity g, normal force P, external force F0 cos(ωt), belt
speed V , and relative velocity Vr = V − u̇. The motion of
equation is described as follows:

mü(t) − f0(V) + ku(t) = F0 cos(ωt) (1)

During the slip mode (Vr , 0), the friction force can be
determined via the friction coefficient µ(Vr). The friction
force is described as follows:

f0(Vr) = µ(Vr)m
(
g +

P
m

)
(2)

where µ(Vr) is given by

µ(Vr) =


γ0 − γ1Vr + γ3V3

r , Vr > 0

[−γ0, γ0], Vr = 0

−γ0 − γ1Vr + γ3V3
r , Vr < 0

(3)

where γ0, γ1 and γ3 are decay constants. In particular, γ0 is
the maximum static fricttion force. We use the dimension-
less value as follows:

ω2
n =

k
m
, τ = ωnt, x =

uωn

V
, ν =

ω

ωn
,

F =
F0ωn

kv
, A0 =

γ0c
(Vωn)

, A1 =
γ1c
ωn
,

A3 =
γ3V2c
ωn
, Vr = 1 − y, c = g +

P
m
.

(4)

Thus, Eq. (1) can be described as follows:
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
dx
dτ
= y

dy
dτ
= −x + f0(y) + F cos(ντ)

(5)

where f0(y) is given by

f0(y) =


−A0 + A1(1 − y) − A3(1 − y3), y > 1

[−A0, A0], y = 1

A0 + A1(1 − y) − A3(1 − y3), y < 1

(6)

Figure 2 shows stick-slip vibration of period-1 orbit.
Figure 3 shows example of the waveforms of the displace-
ment x and the velocity y. Black dots are the time when
the slip mode (kinetic friction force) changes to the stick
mode (static friction force). On the other hand, white dots
are the time when the stick mode changes to the slip mode.
The parameters are fixed as follows: A0 = 1.50, A1 = 1.50,
A3 = 0.45, F = 0.35．
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Figure 1: Physical model.
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Figure 2: Example of the phase plane.

3. Analysis

3.1. Coexistence phenomenon

Figure 4 shows the phase planes for ν=0.44, 0.45 and
0.46. Figure 5 shows waveforms. Dotted line in Fig. 4(b)
and 5(b) is slip vibration. Stick-slip vibration occurs at
ν = 0.44. Slip vibration occurs at ν = 0.46. Here, we
focus on the bifurcation parameter. Stick-slip and slip vi-
brations occur depending on the initial value at ν = 0.45.
Namely, coexistence phenomenon exists by changing the
initial value.

3.2. Return map

We define the Poincaré map T from τk to τk+1 for qualita-
tive analysis in the system. Behavior of the system changes
from stick mode to slip mode at a time τ = τk. Here, the
deplacement xk and velocity yk are described as follows at
the discrete time τk.

xk = A0 + F cos(ντk), (7)

yk = 1. (8)

xk is the function of the time τk and yk is constant. Thus,
the behavior of the system can be assumed as function of
the time τk. The discretization makes the analysis of the
behavior of the system easy. Moreover, we use modulus
and function θk in order to calculate the fixed point [12].
Then, θk and T (θk) are given by:

θk =
ν

2π
τk mod 1, (9)

θk+1 = T (θk) =
ν

2π
τk+1 mod 1. (10)

Figure 6 shows example of the return map of period-1
orbit. More detailed discussion is shown in Ref. [12].

3.3. Bifurcation phenomenon from stick-slip vibration
to slip vibration

We focus on the return map in Fig. 7. The mapping
point disappears at 0.88 < θk < 0.92. Here, this interval
corresponds to slip mode. Therefore mapping point can
not be defined.

In the following, we discuss bifurcation phenomenon
from stick-slip vibration to slip vibration. When the param-
eter is ν = 0.455, the slope of the return map for period-1
orbit is 1.0. We conclude that the saddle node bifurcation
occurs at ν = 0.455. After the saddle node bifurcation oc-
curs, the fixed point disappears. As a result, the system
settles into slip vibration by disappearing coexistence phe-
nomenon of stick-slip and slip vibrations.
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Figure 3: Example of the waveforms.
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(a) ν = 0.44 (b) ν = 0.45 (c) ν = 0.46

Figure 4: Phase planes.
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Figure 5: Waveforms.

- 936 -



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

�
k
+
1
�

�
k
�

Figure 6: Example of return map (ν = 0.62).

4. Conclusion

In this paper, we reported the bifurcation phenomenon
from stick-slip vibration to slip vibration in the non-
autonomous system with dry friction. First, we explained
the physical model of the non-autonomous system with
dry friction. Next, we defined the Poincaré map by fo-
cusing on the local sections and the time. We showed the
return map therefore the Poincaré map can be defined as
one-dimensional. The mapping point disappears when slip
mode is observed. As a result, the saddle node bifurca-
tion caused slip vibration by disappearing coexistence phe-
nomenon of stick-slip and slip vibrations.

5. Acknowledgment

This work was supported by JSPS KAKENHI Grant
Number 25330290.

References

[1] Y. Yoshitake, A. Sueoka and H. Tamura, “Analysis of
vibrational systems with coulomb’s friction (3rd re-
port, quenching of self-excited vibrations),” Transac-
tions of the Japan Society of Mechanical Engineers,
Series C, vol. 56, no. 523, pp. 568–573, 1990.

[2] K. Shin, M. J. Brennan, J. -E. Oh and C. J. Harris,
“Analysis of disc brake noise using a two-degree of-
freedom model,” Journal of Sound and Vibration, vol.
254, issue 5, pp. 837–848, 2002.

[3] S. Natsiavas, “Steady state oscillations and stability
of non-linear dynamic vibration absorbers,” Journal of
Sound and Vibration, vol. 156, no. 2, pp. 227–245,
1992.

[4] M. Nakai and S. Akiyama, “Railway wheel squeal
(Squeal of disk subjected to periodic excitation),” J.
Vib. Acoust, vol. 120, no. 2, pp. 614–622, 1998.

0.75

0.8

0.85

0.9

0.95

0.75 0.8 0.85 0.9 0.95

�
k
+
1
�

�
k
�

Figure 7: Return map with slip vibration (ν = 0.46).
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